Citation: | Muhammad Ozair, Muhammad Farooq Iqbal, Irfan Mahmood, Saima Naz. SAR-based oil spill detection and impact assessment on coastal and marine environments[J]. Acta Oceanologica Sinica, 2024, 43(12): 123-140. doi: 10.1007/s13131-024-2386-8 |
Adamu B, Tansey K, Ogutu B. 2018. Remote sensing for detection and monitoring of vegetation affected by oil spills. International Journal of Remote Sensing, 39(11): 3628–3645, doi: 10.1080/01431161.2018.1448483
|
Ajadi O A, Meyer F J, Tello M, et al. 2018. Oil spill detection in synthetic aperture radar images using Lipschitz-regularity and multiscale techniques. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(7): 2389–2405, doi: 10.1109/JSTARS.2018.2827996
|
Alaa El-Din G, Amer A A, Malsh G, et al. 2018. Study on the use of banana peels for oil spill removal. Alexandria Engineering Journal, 57(3): 2061–2068, doi: 10.1016/j.aej.2017.05.020
|
Alpers W, Holt B, Zeng Kan. 2017. Oil spill detection by imaging radars: challenges and pitfalls. Remote Sensing of Environment, 201: 133–147, doi: 10.1016/j.rse.2017.09.002
|
Arellano P, Tansey K, Balzter H, et al. 2015. Detecting the effects of hydrocarbon pollution in the Amazon forest using hyperspectral satellite images. Environmental Pollution, 205: 225–239, doi: 10.1016/j.envpol.2015.05.041
|
Bhatnagar S, Gill L, Regan S, et al. 2020. Mapping vegetation communities inside wetlands using Sentinel-2 imagery in Ireland. International Journal of Applied Earth Observation and Geoinformation, 88: 102083, doi: 10.1016/j.jag.2020.102083
|
Brekke C, Solberg A H S. 2005. Oil spill detection by satellite remote sensing. Remote Sensing of Environment, 95(1): 1–13, doi: 10.1016/j.rse.2004.11.015
|
Cantorna D, Dafonte C, Iglesias A, et al. 2019. Oil spill segmentation in SAR images using convolutional neural networks. A comparative analysis with clustering and logistic regression algorithms. Applied Soft Computing, 84: 105716, doi: 10.1016/j.asoc.2019.105716
|
Cervantes-Hernández P, Celis-Hernández O, Ahumada-Sempoal M A, et al. 2024. Combined use of SAR images and numerical simulations to identify the source and trajectories of oil spills in coastal environments. Marine Pollution Bulletin, 199: 115981, doi: 10.1016/j.marpolbul.2023.115981
|
Chiu C M, Huang Ching-Jer, Wu Li-Chung, et al. 2018. Forecasting of oil-spill trajectories by using SCHISM and X-band radar. Marine Pollution Bulletin, 137: 566–581, doi: 10.1016/j.marpolbul.2018.10.060
|
Clevers J G P W, Gitelson A A. 2013. Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and -3. International Journal of Applied Earth Observation and Geoinformation, 23: 344–351, doi: 10.1016/j.jag.2012.10.008
|
Delegido J, Verrelst J, Alonso L, et al. 2011. Evaluation of Sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content. Sensors, 11(7): 7063–7081, doi: 10.3390/s110707063
|
Drusch M, Del Bello U, Carlier S, et al. 2012. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sensing of Environment, 120: 25–36, doi: 10.1016/j.rse.2011.11.026
|
Eskes H, Huijnen V, Arola A, et al. 2015. Validation of reactive gases and aerosols in the MACC global analysis and forecast system. Geoscientific Model Development, 8(11): 3523–3543, doi: 10.5194/gmd-8-3523-2015
|
Evans D D, Mulholland G W, Baum H R, et al. 2001. In situ burning of oil spills. Journal of Research of the National Institute of Standards and Technology, 106(1): 231–278, doi: 10.6028/jres.106.009
|
Ewing B R, Hawkins T R, Wiedmann T O, et al. 2012. Integrating ecological and water footprint accounting in a multi-regional input-output framework. Ecological Indicators, 23: 1–8, doi: 10.1016/j.ecolind.2012.02.025
|
Fan Jianchao, Zhang Fengshou, Zhao Dongzhi, et al. 2015. Oil spill monitoring based on SAR remote sensing imagery. Aquatic Procedia, 3: 112–118, doi: 10.1016/j.aqpro.2015.02.234
|
Fingas M, Brown C. 2014. Review of oil spill remote sensing. Marine Pollution Bulletin, 83(1): 9–23, doi: 10.1016/j.marpolbul.2014.03.059
|
Fingas M, Brown C E. 2018. A review of oil spill remote sensing. Sensors, 18(1): 91
|
Fiscella B, Giancaspro A, Nirchio F, et al. 2000. Oil spill detection using marine SAR images. International Journal of Remote Sensing, 21(18): 3561–3566, doi: 10.1080/014311600750037589
|
Frampton W J, Dash J, Watmough G, et al. 2013. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS Journal of Photogrammetry and Remote Sensing, 82: 83–92, doi: 10.1016/j.isprsjprs.2013.04.007
|
Freedman B. 1995. The ecological effects of pollution, disturbance, and other stresses. In: Freedman B, ed. Environmental Ecology. 2nd ed. Amsterdam: Elsevier, 1–10
|
Ganjirad M, Bagheri H. 2024. Google Earth Engine-based mapping of land use and land cover for weather forecast models using Landsat 8 imagery. Ecological Informatics, 80: 102498, doi: 10.1016/j.ecoinf.2024.102498
|
Guanter L, Aben I, Tol P, et al. 2015. Potential of the TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor for the monitoring of terrestrial chlorophyll fluorescence. Atmospheric Measurement Techniques, 8(3): 1337–1352, doi: 10.5194/amt-8-1337-2015
|
Huete A, Didan K, Miura T, et al. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1/2): 195–213, doi: 10.1016/S0034-4257(02)00096-2
|
Jana A, Maiti S, Biswas A. 2016. Seasonal change monitoring and mapping of coastal vegetation types along Midnapur-Balasore coast, Bay of Bengal using multi-temporal Landsat data. Modeling Earth Systems and Environment, 2(1): 7, doi: 10.1007/s40808-015-0062-x
|
Khanna S, Santos M J, Ustin S L, et al. 2013. Detection of salt marsh vegetation stress and recovery after the deepwater horizon oil spill in Barataria Bay, Gulf of Mexico using AVIRIS data. PLoS One, 8(11): e78989, doi: 10.1371/journal.pone.0078989
|
Lee J S, Wen J H, Ainsworth T L, et al. 2008. Improved sigma filter for speckle filtering of SAR imagery. IEEE Transactions on Geoscience and Remote Sensing, 47: 202–213
|
Lehr W J, Fraga R J, Belen M S, et al. 1984. A new technique to estimate initial spill size using a modified Fay-type spreading formula. Marine Pollution Bulletin, 15(9): 326–329, doi: 10.1016/0025-326X(84)90488-0
|
Li Lin, Ustin S L, Lay M. 2005. Application of AVIRIS data in detection of oil-induced vegetation stress and cover change at Jornada, New Mexico. Remote Sensing of Environment, 94(1): 1–16, doi: 10.1016/j.rse.2004.08.010
|
Lin Qianxin, Mendelssohn I A. 2012. Impacts and recovery of the Deepwater horizon oil spill on vegetation structure and function of coastal salt marshes in the northern gulf of Mexico. Environmental Science & Technology, 46(7): 3737–3743
|
Lu Jiang. 2003. Marine oil spill detection, statistics and mapping with ERS SAR imagery in south-east Asia. International Journal of Remote Sensing, 24(15): 3013–3032, doi: 10.1080/01431160110076216
|
Mahindapala W K M. 2020. Oil spill detection in the east of Sri Lanka with Sentinel-1 SAR. E3S Web of Conferences, 211: 02013, doi: 10.1051/e3sconf/202021102013
|
Malenovský Z, Rott H, Cihlar J, et al. 2012. Sentinels for science: potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land. Remote Sensing of Environment, 120: 91–101, doi: 10.1016/j.rse.2011.09.026
|
Marghany M, Van Genderen J. 2014. Entropy algorithm for automatic detection of oil spill from radarsat-2 SAR data. IOP Conference Series: Earth and Environmental Science, 18: 012051, doi: 10.1088/1755-1315/18/1/012051
|
Mdakane L W, Kleynhans W. 2022. Feature selection and classification of oil spill from vessels using Sentinel-1 wide–swath synthetic aperture radar data. IEEE Geoscience and Remote Sensing Letters, 19: 4002505
|
Mera D, Cotos J M, Varela-Pet J, et al. 2012. Adaptive thresholding algorithm based on SAR images and wind data to segment oil spills along the northwest coast of the Iberian Peninsula. Marine Pollution Bulletin, 64(10): 2090–2096, doi: 10.1016/j.marpolbul.2012.07.018
|
Migliaccio M, Nunziata F, Buono A. 2015. SAR polarimetry for sea oil slick observation. International Journal of Remote Sensing, 36(12): 3243–3273, doi: 10.1080/01431161.2015.1057301
|
Misra A, Balaji R. 2017. Simple approaches to oil spill detection using sentinel application platform (SNAP)-ocean application tools and texture analysis: a comparative study. Journal of the Indian Society of Remote Sensing, 45(6): 1065–1075, doi: 10.1007/s12524-016-0658-2
|
Naz S, Iqbal M F, Mahmood I, et al. 2021. Marine oil spill detection using synthetic aperture radar over Indian Ocean. Marine Pollution Bulletin, 162: 111921, doi: 10.1016/j.marpolbul.2020.111921
|
Noomen M F, Skidmore A K. 2009. The effects of high soil CO2 concentrations on leaf reflectance of maize plants. International Journal of Remote Sensing, 30(2): 481–497, doi: 10.1080/01431160802339431
|
Nukapothula S, Wu Jie, Chen Chuqun, et al. 2021. Potential impact of the extensive oil spill on primary productivity in the Red Sea waters. Continental Shelf Research, 222: 104437, doi: 10.1016/j.csr.2021.104437
|
Nur A A, Mandang I, Mubarrok S, et al. 2018. The changes of water mass characteristics using 3-dimensional Regional Ocean Modeling System (ROMS) in Balikpapan bay, Indonesia. IOP Conference Series: Earth and Environmental Science, 162: 012006, doi: 10.1088/1755-1315/162/1/012006
|
Ozigis M S, Kaduk J D, Jarvis C H, et al. 2020. Detection of oil pollution impacts on vegetation using multifrequency SAR, multispectral images with fuzzy forest and random forest methods. Environmental Pollution, 256: 113360, doi: 10.1016/j.envpol.2019.113360
|
Peng Wenfu, Kuang Tingting, Tao Shuai. 2019. Quantifying influences of natural factors on vegetation NDVI changes based on geographical detector in Sichuan, western China. Journal of Cleaner Production, 233: 353–367, doi: 10.1016/j.jclepro.2019.05.355
|
Peng Wenfu, Wang Guangjie, Zhou Jieming, et al. 2016. Dynamic monitoring of fractional vegetation cover along Minjiang River from Wenchuan County to Dujiangyan City using multi-temporal Landsat 5 and 8 images. Acta Ecologica Sinica, 36(7): 1975–1988
|
Peterson G D, Carpenter S R, Brock W A. 2003a. Uncertainty and the management of multistate ecosystems: an apparently rational route to collapse. Ecology, 84(6): 1403–1411, doi: 10.1890/0012-9658(2003)084[1403:UATMOM]2.0.CO;2
|
Peterson C H, Rice S D, Short J W, et al. 2003b. Long-term ecosystem response to the Exxon Valdez oil spill. Science, 302(5653): 2082–2086, doi: 10.1126/science.1084282
|
Prastyani R, Basith A. 2018. Utilisation of Sentinel-1 SAR imagery for oil spill mapping: a case study of Balikpapan Bay oil spill. Journal of Geospatial Information Science and Engineering, 1(1): 22–26
|
Pu Ruiliang, Gong Peng, Yu Qian. 2008. Comparative analysis of EO-1 ALI and Hyperion, and Landsat ETM+ data for mapping forest crown closure and leaf area index. Sensors, 8(6): 3744–3766, doi: 10.3390/s8063744
|
Rajendran S, Vethamony P, Sadooni F N, et al. 2021. Detection of wakashio oil spill off Mauritius using Sentinel-1 and 2 data: capability of sensors, image transformation methods and mapping. Environmental Pollution, 274: 116618, doi: 10.1016/j.envpol.2021.116618
|
Schlemmer M, Gitelson A, Schepers J, et al. 2013. Remote estimation of nitrogen and chlorophyll contents in maize at leaf and canopy levels. International Journal of Applied Earth Observation and Geoinformation, 25: 47–54, doi: 10.1016/j.jag.2013.04.003
|
Shu Y, Li J, Yousif H, et al. 2010. Dark-spot detection from SAR intensity imagery with spatial density thresholding for oil-spill monitoring. Remote Sensing of Environment, 114: 2026–2035, doi: 10.1016/j.rse.2010.04.009
|
Skrunes S, Brekke C, Eltoft T. 2014. Characterization of marine surface slicks by Radarsat-2 multipolarization features. IEEE Transactions on Geoscience and Remote Sensing, 52(9): 5302–5319, doi: 10.1109/TGRS.2013.2287916
|
Somvanshi S S, Kumari M. 2020. Comparative analysis of different vegetation indices with respect to atmospheric particulate pollution using sentinel data. Applied Computing and Geosciences, 7: 100032, doi: 10.1016/j.acags.2020.100032
|
Topouzelis K, Singha S. 2017. Oil spill detection using space-borne sentinel-1 SAR imagery. In: Fingas M, ed. Oil Spill Science and Technology. 2nd ed. Amsterdam: Elsevier, 387–402
|
Vankayalapati K, Dasari H P, Langodan S, et al. 2023. Multi-mission satellite detection and tracking of October 2019 Sabiti oil spill in the Red Sea. Remote Sensing, 15(1): 38
|
Veefkind J P, Aben I, McMullan K, et al. 2012. TROPOMI on the ESA Sentinel-5 precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sensing of Environment, 120: 70–83, doi: 10.1016/j.rse.2011.09.027
|
Yekeen S T, Balogun A L, Yusof K B W. 2020. A novel deep learning instance segmentation model for automated marine oil spill detection. ISPRS Journal of Photogrammetry and Remote Sensing, 167: 190–200, doi: 10.1016/j.isprsjprs.2020.07.011
|
Yin Liping, Zhang Min, Zhang Yuanling, et al. 2018. The long-term prediction of the oil-contaminated water from the Sanchi collision in the East China Sea. Acta Oceanologica Sinica, 37(3): 69–72, doi: 10.1007/s13131-018-1193-5
|
Zalik K R 2008. An efficient K-means clustering algorithm. Pattern Recognition Letters, 29, 1385–1391
|
Zhang Mei, Sun Xian, Xu Jilin. 2020. Heavy metal pollution in the East China Sea: a review. Marine Pollution Bulletin, 159: 111473, doi: 10.1016/j.marpolbul.2020.111473
|
Zhao Jun, Temimi M, Al Azhar M, et al. 2015. Satellite-based tracking of oil pollution in the Arabian Gulf and the sea of Oman. Canadian Journal of Remote Sensing, 41(2): 113–125, doi: 10.1080/07038992.2015.1042543
|
Zheng Zihao, Yang Zhiwei, Wu Zhifeng, et al. 2019. Spatial variation of NO2 and its impact factors in China: an application of Sentinel-5P products. Remote Sensing, 11(16): 1939, doi: 10.3390/rs11161939
|