Volume 43 Issue 10
Oct.  2024
Turn off MathJax
Article Contents
Zhan Shen, Liping Ye, Jing Zhang, Hongmei Ma, Ruifeng Zhang. Major ions and trace metals in glacial meltwaters nearby Ny-Ålesund, Svalbard[J]. Acta Oceanologica Sinica, 2024, 43(10): 86-99. doi: 10.1007/s13131-024-2385-9
Citation: Zhan Shen, Liping Ye, Jing Zhang, Hongmei Ma, Ruifeng Zhang. Major ions and trace metals in glacial meltwaters nearby Ny-Ålesund, Svalbard[J]. Acta Oceanologica Sinica, 2024, 43(10): 86-99. doi: 10.1007/s13131-024-2385-9

Major ions and trace metals in glacial meltwaters nearby Ny-Ålesund, Svalbard

doi: 10.1007/s13131-024-2385-9
Funds:  The National Nature Science Foundation of China under contract Nos 42076227, 41676175 and 41276202; the Chinese Arctic and Antarctic Administration under contract No. CHINARE-YRS2015–21; the Shanghai Pilot Program for Basic Research-Shanghai Jiao Tong University under contract No. 21TQ1400201; the Shanghai Frontiers Science Center of Polar Science (SCOPS).
More Information
  • Corresponding author: E-mail: ruifengzhang@sjtu.edu.cn
  • Received Date: 2024-03-19
  • Accepted Date: 2024-05-31
  • Publish Date: 2024-10-01
  • Ny-Ålesund, located in Arctic Svalbard, is one of the most sensitive areas on Earth to global warming. In recent years, accelerated glacier ablation has become remarkable in Ny-Ålesund. Glacial meltwaters discharge a substantial quantity of materials to the ocean, affecting downstream ecosystems and adjacent oceans. In August 2015, various water samples were taken near Ny-Ålesund, including ice marginal meltwater, proglacial meltwater, supraglacial meltwater, englacial meltwater, and groundwater. Trace metals (Al, Cr, Mn, Fe, Co, Cu, Zn, Cd, and Pb), major ions, alkalinity, pH, dissolved oxygen, water temperature and electric conductivity were also measured. Major ions were mainly controlled by chemical weathering intensity and reaction types, while trace metals were influenced by both chemical weathering and physicochemical control upon their mobility. Indeed, we found that Brøggerbreen was dominated by carbonate weathering via carbonation of carbonate, while Austre Lovénbreen and Pedersenbreen were dominated by sulfide oxidation coupled with carbonate dissolution with a doubled silicate weathering. The higher enrichment of trace metals in supraglacial meltwater compared to ice marginal and proglacial meltwater suggested anthropogenic pollution from atmospheric deposition. In ice marginal and proglacial meltwater, principal component analysis indicated that trace metals like Cr, Al, Co, Mn and Cd were correlated to chemical weathering. This implies that under accelerated glacier retreat, glacier-derived chemical components are subjected to future changes in weathering types and intensity.
  • These authors contributed equally to this work.
  • loading
  • Aciego S M, Stevenson E I, Arendt C A. 2015. Climate versus geological controls on glacial meltwater micronutrient production in southern Greenland. Earth and Planetary Science Letters, 424: 51–58, doi: 10.1016/j.jpgl.2015.05.017
    Bazzano A, Bertinetti S, Ardini F, et al. 2021. Potential source areas for atmospheric lead reaching Ny-Ålesund from 2010 to 2018. Atmosphere, 12(3): 388, doi: 10.3390/atmos12030388
    Boike J, Juszak I, Lange S, et al. 2018. A 20-year record (1998–2017) of permafrost, active layer and meteorological conditions at a high Arctic permafrost research site (Bayelva, Spitsbergen). Earth System Science Data, 10(1): 355–390, doi: 10.5194/essd-10-355-2018
    Colombo M, Brown K A, De Vera J, et al. 2019. Trace metal geochemistry of remote rivers in the Canadian Arctic Archipelago. Chemical Geology, 525: 479–491, doi: 10.1016/j.chemgeo.2019.08.006
    Cooper R J, Wadham J L, Tranter M, et al. 2002. Groundwater hydrochemistry in the active layer of the proglacial zone, Finsterwalderbreen, Svalbard. Journal of Hydrology, 269(3–4): 208–223, doi: 10.1016/S0022-1694(02)00279-2
    Dallmann W K. 2015. Geoscience Atlas of Svalbard. Tromsø: Norwegian Polar Institute Press, 133-173
    Dong Z W, Qin D H, Qin X, et al. 2017. Changes in precipitating snow chemistry with seasonality in the remote Laohugou glacier basin, western Qilian Mountains. Environmental Science and Pollution Research, 24(12): 11404–11414, doi: 10.1007/s11356-017-8778-y
    Feng F, Li Z Q, Jin S, et al. 2012. Hydrochemical characteristics and solute dynamics of meltwater runoff of Urumqi Glacier No. 1, eastern Tianshan, northwest China. Journal of Mountain Science, 9(4): 472–482, doi: 10.1007/s11629-012-2316-7
    Fortner S K, Lyons W B, Fountain A G, et al. 2009. Trace element and major ion concentrations and dynamics in glacier snow and melt: Eliot Glacier, Oregon Cascades. Hydrological Processes, 23(21): 2987–2996, doi: 10.1002/hyp.7418
    Gaillardet J, Dupré B, Louvat P, et al. 1999. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology, 159(1–4): 3–30, doi: 10.1016/S0009-2541(99)00031-5
    Gerringa L J A, Alderkamp A C, van Dijken G, et al. 2020. Dissolved trace metals in the Ross Sea. Frontiers in Marine Science, 7: 577098, doi: 10.3389/fmars.2020.577098
    Graly J A, Drever J I, Humphrey N F. 2017. Calculating the balance between atmospheric CO2 drawdown and organic carbon oxidation in subglacial hydrochemical systems. Global Biogeochemical Cycles, 31(4): 709–727, doi: 10.1002/2016GB005425
    Graly J A, Humphrey N F, Landowski C M, et al. 2014. Chemical weathering under the greenland ice sheet. Geology, 42(6): 551–554, doi: 10.1130/G35370.1
    Green W J, Stage B R, Preston A, et al. 2005. Geochemical processes in the Onyx River, Wright Valley, Antarctica: Major ions, nutrients, trace metals. Geochimica et Cosmochimica Acta, 69(4): 839–850, doi: 10.1016/j.gca.2004.08.001
    Grosbois C, Négrel P, Fouillac C, et al. 2000. Dissolved load of the Loire River: Chemical and isotopic characterization. Chemical Geology, 170(1–4): 179–201, doi: 10.1016/S0009-2541(99)00247-8
    Hagen J O, Kohler J, Melvold K, et al. 2003. Glaciers in Svalbard: mass balance, runoff and freshwater flux. Polar Research, 22(2): 145–159, doi: 10.3402/polar.v22i2.6452
    Halbach K, Mikkelsen Ø, Berg T, et al. 2017. The presence of mercury and other trace metals in surface soils in the Norwegian Arctic. Chemosphere, 188: 567–574, doi: 10.1016/j.chemosphere.2017.09.012
    Haldorsen S, Heim M, Van Der Ploeg M. 2011. Impacts of climate change on groundwater in permafrost areas: Case study from Svalbard, Norway. In: Treidel H, Martin-Bordes J L, Gurdak J J, eds. Climate Change Effects on Groundwater Resources. London: CRC Press, 341–356, doi: 10.1201/b11611-26
    Hawkings J R, Skidmore M L, Wadham J L, et al. 2020. Enhanced trace element mobilization by Earth’s ice sheets. Proceedings of the National Academy of Sciences of the United States of America, 117(50): 31648–31659, doi: 10.1073/pnas.2014378117
    Hindshaw R S, Rickli J, Leuthold J, et al. 2014. Identifying weathering sources and processes in an outlet glacier of the Greenland Ice Sheet using Ca and Sr isotope ratios. Geochimica et Cosmochimica Acta, 145: 50–71, doi: 10.1016/j.gca.2014.09.016
    Hodson A, Tranter M, Gurnell A, et al. 2002. The hydrochemistry of Bayelva, a high Arctic proglacial stream in Svalbard. Journal of Hydrology, 257(1–4): 91–114, doi: 10.1016/S0022-1694(01)00543-1
    Hodson A, Tranter M, Vatne G. 2000. Contemporary rates of chemical denudation and atmospheric CO2 sequestration in glacier basins: An Arctic perspective. Earth Surface Processes and Landforms, 25(13): 1447–1471, doi: 10.1002/1096-9837(200012)25:13<1447::AID-ESP156>3.0.CO;2-9
    Hop H, Falk-Petersen S, Svendsen H, et al. 2006. Physical and biological characteristics of the pelagic system across Fram Strait to Kongsfjorden. Progress in Oceanography, 71(2–4): 182–231, doi: 10.1016/j.pocean.2006.09.007
    Huang J, Kang S C, Zhang Q G, et al. 2013. Atmospheric deposition of trace elements recorded in snow from the Mt. Nyainqêntanglha region, southern Tibetan Plateau. Chemosphere, 92(8): 871–881, doi: 10.1016/j.chemosphere.2013.02.038
    Huertas M J, López-Maury L, Giner-Lamia J, et al. 2014. Metals in cyanobacteria: Analysis of the copper, nickel, cobalt and arsenic homeostasis mechanisms. Life, 4(4): 865–886, doi: 10.3390/life4040865
    Hugonnet R, McNabb R, Berthier E, et al. 2021. Accelerated global glacier mass loss in the early twenty-first century. Nature, 592(7856): 726–731, doi: 10.1038/s41586-021-03436-z
    Ingri J, Widerlund A, Land M. 2005. Geochemistry of major elements in a pristine boreal river system; hydrological compartments and flow paths. Aquatic Geochemistry, 11(1): 57–88, doi: 10.1007/s10498-004-2248-0
    IPCC. 2019. IPCC Special Report on the Ocean and Cryosphere in A Changing Climate (Pörtner H O, Roberts D C, Masson-Delmotte V, et al. , eds. ). Cambridge and New York: Cambridge University Press
    Irvine-Fynn T D L, Bridge J W, Hodson A J. 2010. Rapid quantification of cryoconite: Granule geometry and in situ supraglacial extents, using examples from Svalbard and Greenland. Journal of Glaciology, 56(196): 297–308, doi: 10.3189/002214310791968421
    Irvine-Fynn T D L, Hodson A J. 2010. Biogeochemistry and dissolved oxygen dynamics at a subglacial upwelling, Midtre Lovénbreen, Svalbard. Annals of Glaciology, 51(56): 41–46, doi: 10.3189/172756411795931903
    Jacobson A D, Grace Andrews M, Lehn G O, et al. 2015. Silicate versus carbonate weathering in Iceland: New insights from Ca isotopes. Earth and Planetary Science Letters, 416: 132–142, doi: 10.1016/j.jpgl.2015.01.030
    Klaebe R, Swart P, Frei R. 2021. Chromium isotope heterogeneity on a modern carbonate platform. Chemical Geology, 573: 120227, doi: 10.1016/j.chemgeo.2021.120227
    Krawczyk W E, Lefauconnier B, Pettersson L E. 2003. Chemical denudation rates in the Bayelva Catchment, Svalbard, in the Fall of 2000. Physics and Chemistry of the Earth, Parts A/B/C, 28(28–32): 1257–1271, doi: 10.1016/j.pce.2003.08.054
    Lehmann-Konera S, Kociuba W, Chmiel S, et al. 2021. Effects of biotransport and hydro-meteorological conditions on transport of trace elements in the Scott River (Bellsund, Spitsbergen). PeerJ, 9: e11477, doi: 10.7717/peerj.11477
    Li X Y, Ding Y J, Hood E, et al. 2019. Dissolved iron supply from Asian Glaciers: Local controls and a regional perspective. Global Biogeochemical Cycles, 33(10): 1223–1237, doi: 10.1029/2018GB006113
    Li X Y, He X B, Kang S C, et al. 2016. Diurnal dynamics of minor and trace elements in stream water draining Dongkemadi Glacier on the Tibetan Plateau and its environmental implications. Journal of Hydrology, 541: 1104–1118, doi: 10.1016/j.jhydrol.2016.08.021
    Li X Y, Qin D H, Jing Z F, et al. 2013. Diurnal hydrological controls and non-filtration effects on minor and trace elements in stream water draining the Qiyi Glacier, Qilian Mountain. Science China Earth Sciences, 56(1): 81–92, doi: 10.1007/s11430-012-4480-6
    Mark B G, McKenzie J M, Gómez J. 2005. Hydrochemical evaluation of changing glacier meltwater contribution to stream discharge: Callejon de Huaylas, Peru. Hydrological Sciences Journal, 50(6): 987, doi: 10.1623/hysj.2005.50.6.975
    Miao A J, Wang W X, Juneau P. 2005. Comparison of Cd, Cu, and Zn toxic effects on four marine phytoplankton by pulse-amplitude-modulated fluorometry. Environmental Toxicology and Chemistry, 24(10): 2603–2611, doi: 10.1897/05-009R.1
    Millero F J, Graham T B, Huang F, et al. 2006. Dissociation constants of carbonic acid in seawater as a function of salinity and temperature. Marine Chemistry, 100(1–2): 80–94, doi: 10.1016/j.marchem.2005.12.001
    Mitchell A C, Brown G H, Fuge R. 2005. Are minor and trace elements useful indicators of chemical weathering processes and flow-routing in subglacial hydrological systems?. In: Robert H, Susan F, eds. 62nd Eastern Snow Conference. Ontario: Waterloo Press , 49–67
    Mitchell A C, Brown G H, Fuge R. 2006. Minor and trace elements as indicators of solute provenance and flow routing in a subglacial hydrological system. Hydrological Processes, 20(4): 877–897, doi: 10.1002/hyp.6112
    Morel F M M, Price N M. 2003. The biogeochemical cycles of trace metals in the oceans. Science, 300(5621): 944–947, doi: 10.1126/science.1083545
    Moroni B, Cappelletti D, Ferrero L, et al. 2016. Local vs. long-range sources of aerosol particles upon Ny-Ålesund (Svalbard Islands): mineral chemistry and geochemical records. Rendiconti Lincei, 27(1): 115–127, doi: 10.1007/s12210-016-0533-7
    Nowak A, Hodson A. 2013. Hydrological response of a High-Arctic catchment to changing climate over the past 35 years: A case study of Bayelva watershed, Svalbard. Polar Research, 32(1): 19691, doi: 10.3402/polar.v32i0.19691
    Nowak A, Hodson A. 2014. Changes in meltwater chemistry over a 20-year period following a thermal regime switch from polythermal to cold-based glaciation at Austre Brøggerbreen, Svalbard. Polar Research, 33(1): 22779, doi: 10.3402/polar.v33.22779
    Nowak A, Hodson A. 2015. On the biogeochemical response of a glacierized High Arctic watershed to climate change: Revealing patterns, processes and heterogeneity among micro-catchments. Hydrological Processes, 29(6): 1588–1603, doi: 10.1002/hyp.10263
    Perlt E, von Domaros M, Kirchner B, et al. 2017. Predicting the ionic product of water. Scientific Reports, 7: 10244, doi: 10.1038/s41598-017-10156-w
    Platt S M, Hov Ø, Berg T, et al. 2022. Atmospheric composition in the European Arctic and 30 years of the Zeppelin Observatory, Ny-Ålesund. Atmospheric Chemistry and Physics, 22(5): 3321–3369, doi: 10.5194/acp-22-3321-2022
    Pratush A, Kumar A, Hu Z. 2018. Adverse effect of heavy metals (As, Pb, Hg, and Cr) on health and their bioremediation strategies: a review. International Microbiology, 21(3): 97–106, doi: 10.1007/s10123-018-0012-3
    Raiswell R, Canfield D E. 2012. The iron biogeochemical cycle past and present. Geochemical Perspectives, 1(1): 1–220, doi: 10.7185/geochempersp.1.1
    Rajaram R, Ganeshkumar A, Emmanuel Charles P. 2023. Ecological risk assessment of metals in the Arctic environment with emphasis on Kongsfjorden Fjord and freshwater lakes of Ny-Ålesund, Svalbard. Chemosphere, 310: 136737, doi: 10.1016/j.chemosphere.2022.136737
    Reimann C, Caritat P. 1998. Chemical Elements in the Environment. Berlin, Heidelberg: Springer, Berlin, Heidelberg, doi: 10.1007/978-3-642-72016-1
    Ren J L, Zhang J, Li J B, et al. 2006. Dissolved aluminum in the Yellow Sea and East China Sea - Al as a tracer of Changjiang (Yangtze River) discharge and Kuroshio incursion. Estuarine, Coastal and Shelf Science, 68(1–2): 165–174, doi: 10.1016/j.ecss.2006.02.004
    Rudnick R L, Gao S. 2014. Composition of the continental crust. In: Rudnick R L, ed. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier, 4: 1–51, doi: 10.1016/B978-0-08-095975-7.00301-6
    Rutter N, Hodson A, Irvine-Fynn T, et al. 2011. Hydrology and hydrochemistry of a deglaciating high-Arctic catchment, Svalbard. Journal of Hydrology, 410(1–2): 39–50, doi: 10.1016/j.jhydrol.2011.09.001
    Singh A T, Laluraj C M, Sharma P, et al. 2017. Export fluxes of geochemical solutes in the meltwater stream of Sutri Dhaka Glacier, Chandra basin, Western Himalaya. Environmental Monitoring and Assessment, 189(11): 555, doi: 10.1007/s10661-017-6268-9
    Stachnik Ł, Majchrowska E, Yde J C, et al. 2016. Chemical denudation and the role of sulfide oxidation at Werenskioldbreen, Svalbard. Journal of Hydrology, 538: 177–193, doi: 10.1016/j.jhydrol.2016.03.059
    Stachnik Ł, Yde J C, Nawrot A, et al. 2019. Aluminium in glacial meltwater demonstrates an association with nutrient export (Werenskiöldbreen, Svalbard). Hydrological Processes, 33(12): 1638–1657, doi: 10.1002/hyp.13426
    Stumpf A R, Elwood Madden M E, Soreghan G S, et al. 2012. Glacier meltwater stream chemistry in Wright and Taylor Valleys, Antarctica: Significant roles of drift, dust and biological processes in chemical weathering in a polar climate. Chemical Geology, 322–323: 79–90, doi: 10.1016/j.chemgeo.2012.06.009
    Svendsen H, Beszczynska-Møller A, Hagen J O, et al. 2002. The physical environment of Kongsfjorden – Krossfjorden, an Arctic fjord system in Svalbard. Polar Research, 21(1): 133–166, doi: 10.1111/j.1751-8369.2002.tb00072.x
    Tagliabue A, Bowie A R, Boyd P W, et al. 2017. The integral role of iron in ocean biogeochemistry. Nature, 543(7643): 51–59, doi: 10.1038/nature21058
    Tranter M, Sharp M J, Lamb H R, et al. 2002. Geochemical weathering at the bed of Haut glacier d’Arolla, Switzerland - A new model. Hydrological Processes, 16(5): 959–993, doi: 10.1002/hyp.309
    Tranter M, Wadham J L. 2014. Geochemical weathering in glacial and proglacial environments. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier, 7: 157–173
    Vance D, Little S H, De Souza G F, et al. 2017. Silicon and zinc biogeochemical cycles coupled through the Southern Ocean. Nature Geoscience, 10(3): 202–206, doi: 10.1038/ngeo2890
    Vargo L J, Anderson B M, Dadić R, et al. 2020. Anthropogenic warming forces extreme annual glacier mass loss. Nature Climate Change, 10(9): 856–861, doi: 10.1038/s41558-020-0849-2
    Wadham J L, Tranter M, Hodson A J, et al. 2010. Hydro-biogeochemical coupling beneath a large polythermal Arctic glacier: Implications for subice sheet biogeochemistry. Journal of Geophysical Research: Earth Surface, 115(F4): F04017, doi: 10.1029/2009JF001602
    Willis K, Cottier F, Kwasniewski S, et al. 2006. The influence of advection on zooplankton community composition in an Arctic fjord (Kongsfjorden, Svalbard). Journal of Marine Systems, 61(1–2): 39–54, doi: 10.1016/j.jmarsys.2005.11.013
    Woosley R J, Moon J Y. 2023. Re-evaluation of carbonic acid dissociation constants across conditions and the implications for ocean acidification. Marine Chemistry, 250: 104247, doi: 10.1016/j.marchem.2023.104247
    Yde J C, Knudsen N T, Hasholt B, et al. 2014. Meltwater chemistry and solute export from a Greenland Ice Sheet catchment, Watson River, West Greenland. Journal of Hydrology, 519: 2165–2179, doi: 10.1016/j.jhydrol.2014.10.018
    Yde J C, Riger-Kusk M, Christiansen H H, et al. 2008. Hydrochemical characteristics of bulk meltwater from an entire ablation season, Longyearbreen, Svalbard. Journal of Glaciology, 54(185): 259–272, doi: 10.3189/002214308784886234
    Ye L P, Zhang R F, Sun Q Z, et al. 2018. Hydrochemistry of the meltwater streams on Fildes Peninsula, King George Island, Antarctica. Journal of Oceanology and Limnology, 36(6): 2181–2193, doi: 10.1007/s00343-019-7193-2
    Zeng C, Gremaud V, Zeng H T, et al. 2012. Temperature-driven meltwater production and hydrochemical variations at a glaciated alpine karst aquifer: Implication for the atmospheric CO2 sink under global warming. Environmental Earth Sciences, 65(8): 2285–2297, doi: 10.1007/s12665-011-1160-3
    Zhan J Q, Gao Y, Li W, et al. 2014. Effects of ship emissions on summertime aerosols at Ny-Alesund in the Arctic. Atmospheric Pollution Research, 5(3): 500–510, doi: 10.5094/APR.2014.059
    Zhang R F, John S G, Zhang J, et al. 2015. Transport and reaction of iron and iron stable isotopes in glacial meltwaters on Svalbard near Kongsfjorden: From rivers to estuary to ocean. Earth and Planetary Science Letters, 424: 201–211, doi: 10.1016/j.jpgl.2015.05.031
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views (4) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return