Citation: | Xinchi You, Qiang Hao, Jie Zhu, Wei Zhang, Haiyan Jin, Dewang Li, Huanhong Ji, Yu Ke, Feng Zhou. Effects of phosphorus limitation on sinking velocities of phytoplankton during summer in the Changjiang River Estuary[J]. Acta Oceanologica Sinica, 2024, 43(6): 131-141. doi: 10.1007/s13131-024-2376-x |
Acuña J L, López-Alvarez M, Nogueira E, et al. 2010. Diatom flotation at the onset of the spring phytoplankton bloom: an in situ experiment. Marine Ecology Progress Series, 400: 115–125, doi: 10.3354/meps08405
|
Ammerman J W. 1991. Role of ecto-phosphohydrolases in phosphorus regeneration in estuarine and coastal ecosystems. In: Chróst R J, ed. Microbial Enzymes in Aquatic Environments. New York: Springer
|
Anderson L W J, Sweeney B M. 1978. Role of inorganic ions in controlling sedimentation rate of a marine centric diatom Ditylum brightwelli. Journal of Phycology, 14(2): 204–214, doi: 10.1111/j.1529-8817.1978.tb02450.x
|
Bach L T, Stange P, Taucher J, et al. 2019. The influence of plankton community structure on sinking velocity and remineralization rate of marine aggregates. Global Biogeochemical Cycles, 33(8): 971–994, doi: 10.1029/2019GB006256
|
Bi Rong, Cao Zhong, Ismar-Rebitz S M H, et al. 2021. Responses of marine diatom-dinoflagellate competition to multiple environmental drivers: abundance, elemental, and biochemical aspects. Frontiers in Microbiology, 12: 731786, doi: 10.3389/fmicb.2021.731786
|
Bienfang P K. 1981a. Sinking rates of heterogeneous, temperate phytoplankton populations. Journal of Plankton Research, 3(2): 235–253, doi: 10.1093/plankt/3.2.235
|
Bienfang P K. 1981b. SETCOL — a technologically simple and reliable method for measuring phytoplankton sinking rates. Canadian Journal of Fisheries and Aquatic Sciences, 38(10): 1289–1294, doi: 10.1139/f81-173
|
Bienfang P K. 1984. Size structure and sedimentation of biogenic microparticulates in a subarctic ecosystem. Journal of Plankton Research, 6(6): 985–995, doi: 10.1093/plankt/6.6.985
|
Bienfang P K, Harrison P J. 1984. Sinking-rate response of natural assemblages of temperate and subtropical phytoplankton to nutrient depletion. Marine Biology, 83(3): 293–300, doi: 10.1007/BF00397462
|
Bienfang P K, Harrison P J, Quarmby L M. 1982. Sinking rate response to depletion of nitrate, phosphate and silicate in four marine diatoms. Marine Biology, 67(3): 295–302, doi: 10.1007/BF00397670
|
Cai Ting, Feng Yuanyuan, Xi Maonian, et al. 2022. Response of Tianjin coastal phytoplankton community to ocean acidification and nitrate enrichment. Marine Sciences (in Chinese), 46(9): 85–97
|
Casey J R, Mardinoglu A, Nielsen J, et al. 2016. Adaptive evolution of phosphorus metabolism in Prochlorococcus. mSystems, 1(6): e00065–16, doi: 10.1128/mSystems.00065-16
|
Chen Nansheng, Cui Zongmei, Xu Qing. 2021. Advances in the study of biodiversity of phytoplankton and red tide species in China (IV): the Changjiang Estuary. Oceanologia et Limnologia Sinica (in Chinese), 52(2): 402–417
|
Cloern J E. 2001. Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series, 210: 223–253, doi: 10.3354/meps210223
|
Correll D L. 1998. The role of phosphorus in the eutrophication of receiving waters: a review. Journal of Environmental Quality, 27(2): 261–266, doi: 10.2134/jeq1998.00472425002700020004x
|
Culver M E, Smith Jr W O. 1989. Effects of environmental variation on sinking rates of marine phytoplankton. Journal of Phycology, 25(2): 262–270, doi: 10.1111/j.1529-8817.1989.tb00122.x
|
Deng Wei, Monks L, Neuer S. 2015. Effects of clay minerals on the aggregation and subsequent settling of marine Synechococcus. Limnology and Oceanography, 60(3): 805–816, doi: 10.1002/lno.10059
|
Dyhrman S T, Jenkins B D, Rynearson T A, et al. 2012. The transcriptome and proteome of the diatom Thalassiosira pseudonana reveal a diverse phosphorus stress response. PLoS One, 7(3): e33768, doi: 10.1371/journal.pone.0033768
|
Eppley R W. 1972. Temperature and phytoplankton growth in the sea. Fishery Bulletin, 70(4): 1063–1085
|
Eppley R W, Holmes R W, Strickland J D H. 1967. Sinking rates of marine phytoplankton measured with a fluorometer. Journal of Experimental Marine Biology and Ecology, 1(2): 191–208, doi: 10.1016/0022-0981(67)90014-7
|
Falkowski P G. 2002. The ocean’s invisible forest. Scientific American, 287(2): 54–61, doi: 10.1038/scientificamerican0802-54
|
Grasshoff K M, Kremling K, Ehrhardt M. 1976. Methods of Seawater Analysis. Weinheim: Verlag Chemie
|
Grosse J, Burson A, Stomp M, et al. 2017. From ecological stoichiometry to biochemical composition: variation in N and P supply alters key biosynthetic rates in marine phytoplankton. Frontiers in Microbiology, 8: 1299, doi: 10.3389/fmicb.2017.01299
|
Guo Shujin, Sun Jun, Zhao Qibiao, et al. 2016. Sinking rates of phytoplankton in the Changjiang (Yangtze River) Estuary: a comparative study between Prorocentrum dentatum and Skeletonema dorhnii bloom. Journal of Marine Systems, 154: 5–14, doi: 10.1016/j.jmarsys.2015.07.003
|
Haley S T, Alexander H, Juhl A R, et al. 2017. Transcriptional response of the harmful raphidophyte Heterosigma akashiwo to nitrate and phosphate stress. Harmful Algae, 68: 258–270, doi: 10.1016/j.hal.2017.07.001
|
Hoppe H G. 2003. Phosphatase activity in the sea. Hydrobiologia, 493(1–3): 187–200, doi: 10.1023/A:1025453918247
|
Huisman J, Arrayás M, Ebert U, et al. 2002. How do sinking phytoplankton species manage to persist?. The American Naturalist, 159(3): 245–254
|
Huisman J, Sommeijer B. 2002. Maximal sustainable sinking velocity of phytoplankton. Marine Ecology Progress Series, 244: 39–48, doi: 10.3354/meps244039
|
IBM Corp. 2020. IBM SPSS statistics for windows, version 27.0. Armonk, NY: IBM Corp
|
Johnson T O, Smith Jr W O. 1986. Sinking rates of phytoplankton assemblages in the Weddell Sea marginal ice zone. Marine Ecology Progress Series, 33: 131–137, doi: 10.3354/meps033131
|
Justić D, Rabalais N N, Turner R E, et al. 1995. Changes in nutrient structure of river-dominated coastal waters: stoichiometric nutrient balance and its consequences. Estuarine, Coastal and Shelf Science, 40(3): 339–356, doi: 10.1016/S0272-7714(05)80014-9
|
Kang Wei, Wang Zhaohui, Liu Lei, et al. 2019. Alkaline phosphatase activity in the phosphorus-limited southern Chinese coastal waters. Journal of Environmental Sciences, 86: 38–49, doi: 10.1016/j.jes.2019.04.026
|
Karp-Boss L, Boss E, Jumars P A. 1996. Nutrient fluxes to planktonic osmotrophs in the presence of fluid motion. Oceanography and Marine Biology, 34: 71–107
|
Labry C, Delmas D, Herbland A. 2005. Phytoplankton and bacterial alkaline phosphatase activities in relation to phosphate and DOP availability within the Gironde plume waters (Bay of Biscay). Journal of Experimental Marine Biology and Ecology, 318(2): 213–225, doi: 10.1016/j.jembe.2004.12.017
|
Li Zhao, Song Shuqun, Li Caiwen, et al. 2018. The sinking of the phytoplankton community and its contribution to seasonal hypoxia in the Changjiang (Yangtze River) Estuary and its adjacent waters. Estuarine, Coastal and Shelf Science, 208: 170–179, doi: 10.1016/j.ecss.2018.05.007
|
Li Hong, Veldhuis M J W, Post A F. 1998. Alkaline phosphatase activities among planktonic communities in the northern Red Sea. Marine Ecology Progress Series, 173: 107–115, doi: 10.3354/meps173107
|
Liu Sumei, Qi Xiaohong, Li Xiaona, et al. 2016. Nutrient dynamics from the Changjiang (Yangtze River) Estuary to the East China Sea. Journal of Marine Systems, 154: 15–27, doi: 10.1016/j.jmarsys.2015.05.010
|
Luo Hao, Lin Xin, Li Ling, et al. 2017. Transcriptomic and physiological analyses of the dinoflagellate Karenia mikimotoi reveal non-alkaline phosphatase-based molecular machinery of ATP utilisation. Environmental Microbiology, 19(11): 4506–4518, doi: 10.1111/1462-2920.13899
|
Lv Songhui, Li Ying. 2006. Nutritional storage ability of four harmful algae from the East China Sea. The Chinese Journal of Process Engineering (in Chinese), 6(3): 439–444
|
Mao Yingjie, Li Xiaoqian, Zhang Guicheng, et al. 2021. Sinking rate and community structures of autumn phytoplankton responses to mesoscale physical processes in the western South China Sea. Frontiers in Microbiology, 12: 777473, doi: 10.3389/fmicb.2021.777473
|
Mao Yingjie, Sun Jun, Guo Congcong, et al. 2023. Sinking rates of phytoplankton in response to cell size and carbon biomass: a case study in the northeastern South China Sea. Journal of Marine Systems, 240: 103885, doi: 10.1016/j.jmarsys.2023.103885
|
Mo Yu, Ou Linjian, Lin Lizhen, et al. 2020. Temporal and spatial variations of alkaline phosphatase activity related to phosphorus status of phytoplankton in the East China Sea. Science of the Total Environment, 731: 139192, doi: 10.1016/j.scitotenv.2020.139192
|
Muggli D L, Lecourt M, Harrison P J. 1996. Effects of iron and nitrogen source on the sinking rate, physiology and metal composition of an oceanic diatom from the subarctic Pacific. Marine Ecology Progress Series, 132(1–3): 215–227, doi: 10.3354/meps132215
|
Ning Xiuren, Shi Junxian, Cai Yuming, et al. 2004. Biological productivity front in the Changjiang Estuary and the Hangzhou Bay and its ecological effects. Haiyang Xuebao (in Chinese), 26(6): 96–106
|
Peperzak L, Colijn F, Koeman R, et al. 2003. Phytoplankton sinking rates in the Rhine region of freshwater influence. Journal of Plankton Research, 25(4): 365–383, doi: 10.1093/plankt/25.4.365
|
Petrucciani A, Moretti P, Ortore M G, et al. 2023. Integrative effects of morphology, silicification, and light on diatom vertical movements. Frontiers in Plant Science, 14: 1143998, doi: 10.3389/fpls.2023.1143998
|
Pilkaitytë R, Schoor A, Schubert H. 2004. Response of phytoplankton communities to salinity changes—a mesocosm approach. Hydrobiologia, 513(1–3): 27–38, doi: 10.1023/B:hydr.0000018162.50270.54
|
Pitcher G C, Walker D R, Mitchell-Lnnes B A. 1989. Phytoplankton sinking rate dynamics in the southern Benguela upwelling system. Marine Ecology Progress Series, 55(2–3): 261–269
|
R Core Team. 2011. R: a language and environment for statistical computing. Computing, 1: 12–21
|
Redfield A C, Ketchum B H, Richards F A. 1963. The influence of organisms on the composition of sea-water. In: Hill M N, ed. The Composition of Seawater: Comparative and Descriptive Oceanography. The Sea: Ideas and Observations on Progress in the Study of the Sea. New York: Interscience Publishers
|
Reynolds C S. 2006. The Ecology of Phytoplankton. Cambridge: Cambridge University Press
|
Richardson T L. 2018. Mechanisms and pathways of small-phytoplankton export from the surface ocean. Annual Review of Marine Science, 11: 57–74
|
Riebesell U. 1989. Comparison of sinking and sedimentation rate measurements in a diatom winter/spring bloom. Marine Ecology Progress Series, 54: 109–119, doi: 10.3354/meps054109
|
Smayda T J. 1970. The suspension and sinking of phytoplankton in the sea. Oceanography and Marine Biology: An Annual Review, 8: 353–414
|
Sun Xiaohong, Li Zhao, Ding Xueyan, et al. 2022. Effects of algal blooms on phytoplankton composition and hypoxia in coastal waters of the northern Yellow Sea, China. Frontiers in Marine Science, 9: 897418, doi: 10.3389/fmars.2022.897418
|
Sundareshwar P V, Morris J T, Koepfler E K, et al. 2003. Phosphorus limitation of coastal ecosystem processes. Science, 299(5606): 563–565, doi: 10.1126/science.1079100
|
Thomas R H, Walsby A E. 1985. Buoyancy regulation in a strain of Microcystis. Journal of General Microbiology, 131(4): 799–809
|
Tseng Y F, Lin J, Dai Minhan, et al. 2014. Joint effect of freshwater plume and coastal upwelling on phytoplankton growth off the Changjiang River. Biogeosciences, 11(2): 409–423, doi: 10.5194/bg-11-409-2014
|
Waite A. 1997. Sinking rate versus cell volume relationships illuminate sinking rate control mechanisms in marine diatoms. Marine Ecology Progress Series, 157: 97–108, doi: 10.3354/meps157097
|
Waite A, Bienfang P K, Harrison P J. 1992a. Spring bloom sedimentation in a subarctic ecosystem. I. Nutrient sensitivity. Marine Biology, 114(1): 119–129, doi: 10.1007/BF00350861
|
Waite A M, Nodder S D. 2001. The effect of in situ iron addition on the sinking rates and export flux of southern ocean diatoms. Deep-Sea Research Part II: Topical Studies in Oceanography, 48(11–12): 2635–2654, doi: 10.1016/S0967-0645(01)00012-1
|
Waite A M, Thompson P A, Harrison P J. 1992b. Does energy control the sinking rates of marine diatoms?. Limnology and Oceanography, 37(3): 468–477
|
Walsby A E. 1972. Structure and function of gas vacuoles. Bacteriological Reviews, 36(1): 1–32, doi: 10.1128/br.36.1.1-32.1972
|
Wang Wenliang, Chen Jianfang, Jin Haiyan, et al. 2009. The distribution characteristics and influence factors of some species phosphorus in waters of the Changjiang River Estuary in summer. Journal of Marine Sciences (in Chinese), 27(2): 32–41, doi: 10.3969/j.issn.1001-909X.2009.02.005
|
Wang Kui, Chen Jianfang, Jin Haiyan, et al. 2013. Nutrient structure and limitation in Changjiang River Estuary and adjacent East China Sea. Haiyang Xuebao (in Chinese), 35(3): 128–136
|
Wang Bin, Chen Jianfang, Jin Haiyan, et al. 2017. Diatom bloom-derived bottom water hypoxia off the Changjiang Estuary, with and without typhoon influence. Limnology and Oceanography, 62(4): 1552–1569, doi: 10.1002/lno.10517
|
Wang Yiheng, Hao Qiang, Chen Jianfang, et al. 2022a. Alkaline phosphatase activity of size-fractionated phytoplankton in the Changjiang Estuary in summer. Journal of Marine Sciences (in Chinese), 40(4): 25–37, doi: 10.3969/j.issn.1001-909X.2022.04.003
|
Wang Zongling, Li Ruixiang, Zhu Mingyuan, et al. 2006. Study on population growth processes and interspecific competition of Prorocentrum donghaiense and Skeletonema costatum in semi-continuous dilution experiments. Advances in Marine Science (in Chinese), 24(4): 495–503
|
Wang Xingzhou, Sun Jun, Wei Yuqiu, et al. 2022b. Response of the phytoplankton sinking rate to community structure and environmental factors in the eastern Indian Ocean. Plants, 11(12): 1534, doi: 10.3390/plants11121534
|
Wang Cong, Wang Jingtian, Li Ling, et al. 2022c. P-limitation promotes carbon accumulation and sinking of Emiliania huxleyi through transcriptomic reprogramming. Frontiers in Marine Science, 9: 860222, doi: 10.3389/fmars.2022.860222
|
Xu Jiajing, Zhou Peng, Lian Ergang, et al. 2021. Spatial distribution of chlorophyll a and its relationships with environmental factors influenced by front in the Changjiang River Estuary and its adjacent waters in summer 2019. Marine Science Bulletin (in Chinese), 40(5): 541–549
|
Yamaguchi H, Nishijima T, Nishitani H, et al. 2004. Organic phosphorus utilization and alkaline phosphatase production of 3 red tide phytoplankton. Nippon Suisan Gakkaishi, 70(2): 123–130, doi: 10.2331/suisan.70.123
|
Yang Lu, Zhang Yujia, Wang Xiaoli, et al. 2023. Spatiotemporal changes of biogenic elements in the Changjiang River Estuary and adjacent waters in summer over the last decade. Acta Oceanologica Sinica, 42(1): 83–90, doi: 10.1007/s13131-022-2104-3
|
Zhang Xiaohua, Lin Senjie, Liu Dongyan. 2020. Transcriptomic and physiological responses of Skeletonema costatum to ATP utilization. Environmental Microbiology, 22(5): 1861–1869, doi: 10.1111/1462-2920.14944
|
Zhang Xia, Zhang Jingping, Shen Yuan, et al. 2018. Dynamics of alkaline phosphatase activity in relation to phytoplankton and bacteria in a coastal embayment Daya Bay, South China. Marine Pollution Bulletin, 131: 736–744, doi: 10.1016/j.marpolbul.2018.05.008
|
Zhang Xia, Zhang Jingping, Yuan Huamao, et al. 2021. Seasonal dynamics of phytoplankton phosphorus stress in temperate Jiaozhou Bay, North China. Continental Shelf Research, 231: 104602, doi: 10.1016/j.csr.2021.104602
|
Zhou Feng, Chai Fei, Huang Daji, et al. 2020. Coupling and decoupling of high biomass phytoplankton production and hypoxia in a highly dynamic coastal system: the Changjiang (Yangtze River) Estuary. Frontiers in Marine Science, 7: 259, doi: 10.3389/fmars.2020.00259
|
Zhou Feng, Qian Zhouyi, Liu Anqi, et al. 2021. Recent progress on the studies of the physical mechanisms of hypoxia off the Changjiang (Yangtze River) Estuary. Journal of Marine Sciences (in Chinese), 39(4): 22–38
|