Citation: | Zhiwei Tian, Caixia Wang, Zipeng Yu, Hailong Liu, Pengfei Lin, Zhuhua Li. Tide simulation in a global eddy-resolving ocean model[J]. Acta Oceanologica Sinica, 2024, 43(9): 1-10. doi: 10.1007/s13131-024-2352-5 |
Ansong J K, Arbic B K, Alford M H, et al. 2017. Semidiurnal internal tide energy fluxes and their variability in a global ocean model and moored observations. Journal of Geophysical Research: Oceans, 122(3): 1882–1900, doi: 10.1002/2016JC012184
|
Ansong J K, Arbic B K, Buijsman M C, et al. 2015. Indirect evidence for substantial damping of low-mode internal tides in the open ocean. Journal of Geophysical Research: Oceans, 120(9): 6057–6071, doi: 10.1002/2015JC010998
|
Arbic B K, Alford M H, Ansong J K, et al. 2018. A primer on global internal tide and internal gravity wave continuum modeling in HYCOM and MITgcm. In: Chassignet E P, Pascual A, Tintoré J, et al, eds. New Frontiers in Operational Oceanography. GODAE OceanView, 308–334
|
Arbic B K, Garner S T, Hallberg R W, et al. 2004. The accuracy of surface elevations in forward global barotropic and baroclinic tide models. Deep-Sea Research Part II: Topical Studies in Oceanography, 51(25/26): 3069–3101, doi: 10.1016/j.dsr2.2004.09.014
|
Arbic B K, Richman J G, Shriver J F, et al. 2012. Global modeling of internal tides within an eddying ocean general circulation model. Oceanography, 25(2): 20–29, doi: 10.5670/oceanog.2012.38
|
Arbic B K, Wallcraft A J, Metzger E J. 2010. Concurrent simulation of the eddying general circulation and tides in a global ocean model. Ocean Modelling, 32(3/4): 175–187, doi: 10.1016/j.ocemod.2010.01.007
|
Buijsman M C, Ansong J K, Arbic B K, et al. 2016. Impact of parameterized internal wave drag on the semidiurnal energy balance in a global ocean circulation model. Journal of Physical Oceanography, 46(5): 1399–1419., doi: 10.1175/JPO-D-15-0074.1
|
Buijsman M C, Stephenson G R, Ansong J K, et al. 2020. On the interplay between horizontal resolution and wave drag and their effect on tidal baroclinic mode waves in realistic global ocean simulations. Ocean Modelling, 152: 101656, doi: 10.1016/j.ocemod.2020.101656
|
Carrere L, Arbic B K, Dushaw B, et al. 2021. Accuracy assessment of global internal-tide models using satellite altimetry. Ocean Science, 17(1): 147–180, doi: 10.5194/os-17-147-2021
|
Codiga D L. 2011. Unified tidal analysis and prediction using the UTide matlab functions. Technical Report 2011-01. Narragansett: Graduate School of Oceanography, University of Rhode Island, 59
|
Egbert G D. 1997. Tidal data inversion: interpolation and inference. Progress in Oceanography, 40(1–4): 53–80, doi: 10.1016/S0079-6611(97)00023-2
|
Egbert G D, Erofeeva S Y. 2002. Efficient inverse modeling of Barotropic ocean tides. Journal of Atmospheric and Oceanic Technology, 19(2): 183–204, doi: 10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
|
Egbert G D, Ray R D. 2000. Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405(6788): 775–778, doi: 10.1038/35015531
|
Fisheries and Oceans Canada. 2017. Table for the astronomical argument V+U. https://www.dfo-mpo.gc.ca/science/data-donnees/tidal-marees/argument-u-v-eng.html [2017-01-26/2023-09-15]
|
Fisheries and Oceans Canada. 2018. Table of values for the node factor f. https://www.dfo-mpo.gc.ca/science/data-donnees/tidal-marees/facteur-node-factor-eng.html[2018-02-27/2023-09-15]
|
Hendershott M C. 1972. The effects of solid earth deformation on global ocean tides. Geophysical Journal of the Royal Astronomical Society, 29(4): 389–402, doi: 10.1111/j.1365-246X.1972.tb06167.x
|
Jayne S R. 2009. The impact of abyssal mixing parameterizations in an ocean general circulation model. Journal of Physical Oceanography, 39(7): 1756–1775, doi: 10.1175/2009JPO4085.1
|
Jayne S R, St. Laurent L C. 2001. Parameterizing tidal dissipation over rough topography. Geophysical Research Letters, 28(5): 811–814, doi: 10.1029/2000GL012044
|
Jin Jiangbo, Guo Run, Zhang Minghua, et al. 2022. Formulation of a new explicit tidal scheme in revised LICOM2.0. Geoscientific Model Development, 15(10): 4259–4273, doi: 10.5194/gmd-15-4259-2022
|
Kostov Y, Armour K C, Marshall J. 2014. Impact of the Atlantic meridional overturning circulation on ocean heat storage and transient climate change. Geophysical Research Letters, 41(6): 2108–2116, doi: 10.1002/2013GL058998
|
Li Yiwen, Liu, Hailong, Ding Mengrong, et al. 2020. Eddy-resolving simulation of CAS-LICOM3 for phase 2 of the ocean model intercomparison project. Advances in Atmospheric Sciences, 37(10): 1067–1080, doi: 10.1007/s00376-020-0057-z
|
Li Zhuhua, von Storch J S. 2020. M2 internal-tide generation in STORMTIDE2. Journal of Geophysical Research: Oceans, 125(8): e2019JC015453, doi: 10.1029/2019JC015453
|
Logemann K, Linardakis L, Korn P, et al. 2021. Global tide simulations with ICON-O: testing the model performance on highly irregular meshes. Ocean Dynamics, 71(1): 43–57, doi: 10.1007/s10236-020-01428-7
|
Marshall J, Speer K. 2012. Closure of the meridional overturning circulation through Southern Ocean upwelling. Nature Geoscience, 5(3): 171–180, doi: 10.1038/ngeo1391
|
Melet A, Hallberg R, Legg S, et al. 2013. Sensitivity of the ocean state to the vertical distribution of internal-tide-driven mixing. Journal of Physical Oceanography, 43(3): 602–615, doi: 10.1175/JPO-D-12-055.1
|
Müller M, Arbic B K, Richman J G, et al. 2015. Toward an internal gravity wave spectrum in global ocean models. Geophysical Research Letters, 42(9): 3474–3481, doi: 10.1002/2015GL063365
|
Müller M, Cherniawsky J Y, Foreman M G G, et al. 2012. Global M2 internal tide and its seasonal variability from high resolution ocean circulation and tide modeling. Geophysical Research Letters, 39(19): l19607
|
Müller M, Cherniawsky J Y, Foreman M G G, et al. 2014. Seasonal variation of the M2 tide. Ocean Dynamics, 64(2): 159–177, doi: 10.1007/s10236-013-0679-0
|
Müller M, Haak H, Jungclaus J H, et al. 2010. The effect of ocean tides on a climate model simulation. Ocean Modelling, 35(4): 304–313, doi: 10.1016/j.ocemod.2010.09.001
|
Munk W, Wunsch C. 1998. Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Research Part I: Oceanographic Research Papers, 45(12): 1977–2010, doi: 10.1016/S0967-0637(98)00070-3
|
Murray R J. 1996. Explicit generation of orthogonal grids for ocean models. Journal of Computational Physics, 126(2): 251–273, doi: 10.1006/jcph.1996.0136
|
National Centers for Environmental Information. 2006. 2-Minute Gridded Global Relief Data (ETOPO2) v2. Beijing, China: National Geophysical Data Center, National Centers for Environmental Information, doi: 10.7289/V5J1012Q
|
Niwa Y, Hibiya T. 2014. Generation of baroclinic tide energy in a global three-dimensional numerical model with different spatial grid resolutions. Ocean Modelling, 80: 59–73, doi: 10.1016/j.ocemod.2014.05.003
|
Peng Shiqiu, Liao Jiawen, Wang Xiaowei, et al. 2021. Energetics-based estimation of the diapycnal mixing induced by internal tides in the Andaman Sea. Journal of Geophysical Research: Oceans, 126(4): e2020JC016521, doi: 10.1029/2020JC016521
|
Ponchaut F, Lyard F, Le Provost C. 2001. An analysis of the tidal signal in the WOCE Sea level dataset. Journal of Atmospheric and Oceanic Technology, 18(1): 77–91, doi: 10.1175/1520-0426(2001)018<0077:AAOTTS>2.0.CO;2
|
Pugh D T. 1996. Tides, Surges and Mean Sea-Level (Reprinted with Corrections). Chichester: John Wiley & Sons Ltd, 59–140
|
Rocha C B, Chereskin T K, Gille S T, et al. 2016a. Mesoscale to submesoscale wavenumber spectra in drake passage. Journal of Physical Oceanography, 46(2): 601–620, doi: 10.1175/JPO-D-15-0087.1
|
Rocha C B, Gille S T, Chereskin T K, et al. 2016b. Seasonality of submesoscale dynamics in the Kuroshio Extension. Geophysical Research Letters, 43(21): 11304–11311
|
Saenko O A, Merryfield W J. 2005. On the effect of topographically enhanced mixing on the global ocean circulation. Journal of Physical Oceanography, 35(5): 826–834, doi: 10.1175/JPO2722.1
|
Savage A C, Arbic B K, Alford M H, et al. 2017a. Spectral decomposition of internal gravity wave sea surface height in global models. Journal of Geophysical Research: Oceans, 122(10): 7803–7821, doi: 10.1002/2017JC013009
|
Savage A C, Arbic B K, Richman J G, et al. 2017b. Frequency content of sea surface height variability from internal gravity waves to mesoscale eddies. Journal of Geophysical Research: Oceans, 122(3): 2519–2538, doi: 10.1002/2016JC012331
|
Schiller A. 2004. Effects of explicit tidal forcing in an OGCM on the water-mass structure and circulation in the Indonesian throughflow region. Ocean Modelling, 6(1): 31–49, doi: 10.1016/S1463-5003(02)00057-4
|
Schiller A, Fiedler R. 2007. Explicit tidal forcing in an ocean general circulation model. Geophysical Research Letters, 34(3): L03611
|
Shum C K, Woodworth P L, Andersen O B, et al. 1997. Accuracy assessment of recent ocean tide models. Journal of Geophysical Research: Oceans, 102(C11): 25173–25194, doi: 10.1029/97JC00445
|
Simmons H L, Jayne S R, St. Laurent L C, et al. 2004. Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modelling, 6(3/4): 245–263, doi: 10.1016/S1463-5003(03)00011-8
|
Siyanbola O Q, Buijsman M C, Delpech A, et al. 2023. Remote internal wave forcing of regional ocean simulations near the U.S. West Coast. Ocean Modelling, 181: 102154, doi: 10.1016/j.ocemod.2022.102154
|
Song Pengyang, Sidorenko D, Scholz P, et al. 2023. The tidal effects in the finite-volumE sea ice–ocean model (FESOM2.1): a comparison between parameterised tidal mixing and explicit tidal forcing. Geoscientific Model Development, 16(1): 383–405, doi: 10.5194/gmd-16-383-2023
|
St. Laurent L C, Simmons H L Jayne S R. 2002. Estimating tidally driven mixing in the deep ocean. Geophysical Research Letters, 29(23): 21
|
Stammer D, Ray R D, Andersen O B, et al. 2014. Accuracy assessment of global barotropic ocean tide models. Reviews of Geophysics, 52(3): 243–282, doi: 10.1002/2014RG000450
|
Talley L D. 2013. Closure of the global overturning circulation through the Indian, Pacific, and southern oceans: schematics and transports. Oceanography, 26(1): 80–97, doi: 10.5670/oceanog.2013.07
|
Thomas M, Sündermann J, Maier-Reimer E. 2001. Consideration of ocean tides in an OGCM and impacts on subseasonal to decadal polar motion excitation. Geophysical Research Letters, 28(12): 2457–2460, doi: 10.1029/2000GL012234
|
Tsujino H, Urakawa S, Nakano H, et al. 2018. JRA-55 based surface dataset for driving ocean-sea-ice models (JRA55-do). Ocean Modelling, 130: 79–139, doi: 10.1016/j.ocemod.2018.07.002
|
von Storch J S, Hertwig E, Lüschow V, et al. 2023. Open-ocean tides simulated by ICON-O, version icon-2.6. 6. Geoscience Model Development, 16(17): 5179–5196, doi: 10.5194/gmd-16-5179-2023
|
Wang Xiaowei, Peng Shiqiu, Liu Zhiyu, et al. 2016. Tidal mixing in the South China Sea: an estimate based on the internal tide energetics. Journal of Physical Oceanography, 46(1): 107–124, doi: 10.1175/JPO-D-15-0082.1
|
Yu Yi, Liu Hailong, Lan Jian. 2016. The influence of explicit tidal forcing in a climate ocean circulation model. Acta Oceanologica Sinica, 35(9): 42–50, doi: 10.1007/s13131-016-0931-9
|
Yu Zipeng, Liu Hailong, Lin Pengfei. 2017. A numerical study of the influence of tidal mixing on Atlantic Meridional Overturning Circulation (AMOC) simulation. Chinese Journal of Atmospheric Sciences (in Chinese), 41(5): 1087–1100
|
Yu Yi, Liu Hailong, Lin Pengfei, et al. 2020. The impact of oceanic processes on the transient climate response: a tidal forcing experiment. Acta Oceanologica Sinica, 39(1): 52–62, doi: 10.1007/s13131-019-1466-0
|
Zuo Juncheng, Du Ling, Chen Meixiang, et al. 2018. Analysis Method of Ocean Hydrological Environmental Factors (in Chinese). Beijing, China: Science Press, 249–252
|
1. | Zhuoya Qiu, LanLan Zhang, Yiping Yang, et al. Significant terrigenous dilution affected biogenic deposits in the Bay of Bengal during the last deglaciation to glaciation. Global and Planetary Change, 2024. doi:10.1016/j.gloplacha.2024.104477 | |
2. | Hui Zhang, Shengfa Liu, Peng Cao, et al. Geochemical records provide evidences for the evolution of the marine redox environment in the southwestern Sumatra waters over the past 35, 000 years. Journal of Asian Earth Sciences, 2023, 255: 105759. doi:10.1016/j.jseaes.2023.105759 | |
3. | Shengfa Liu, Hui Zhang, Peng Cao, et al. Paleoproductivity evolution in the northeastern Indian Ocean since the last glacial maximum: Evidence from biogenic silica variations. Deep Sea Research Part I: Oceanographic Research Papers, 2021, 175: 103591. doi:10.1016/j.dsr.2021.103591 |