Citation: | Bowen Sun, Shuchang Xu, Zhankun Wang, Yujie Feng, Baofu Li. Spatiotemporal features and vertical structures of four types of mesoscale eddies in the Kuroshio Extension region[J]. Acta Oceanologica Sinica, 2024, 43(5): 30-40. doi: 10.1007/s13131-024-2323-x |
Castellani M. 2006. Identification of eddies from sea surface temperature maps with neural networks. International Journal of Remote Sensing, 27(8): 1601–1618, doi: 10.1080/014311605004 62170
|
Chaigneau A, Le Texier M, Eldin G, et al. 2011. Vertical structure of mesoscale eddies in the eastern South Pacific Ocean: A composite analysis from altimetry and Argo profiling floats. Journal of Geophysical Research: Oceans, 116(C11): C11025, doi: 10.1029/2011JC007134
|
D’Alimonte D. 2009. Detection of mesoscale eddy-related structures through ISO-SST patterns. IEEE Geoscience and Remote Sensing Letters, 6(2): 189–193, doi: 10.1109/LGRS.2008.2009550
|
Desbiolles F, Alberti M, Hamouda M E, et al. 2021. Links between sea surface temperature structures, clouds and rainfall: study case of the Mediterranean Sea. Geophysical Research Letters, 48(10): e2020GL091839, doi: 10.1029/2020GL091839
|
Dilmahamod A F, Aguiar-González B, Penven P, et al. 2018. SIDDIES corridor: A major east-west pathway of long-lived surface and subsurface eddies crossing the subtropical South Indian Ocean. Journal of Geophysical Research: Oceans, 123(8): 5406–5425, doi: 10.1029/2018JC013828
|
Dong D, Brandt D, Chang P, et al. 2017. Mesoscale eddies in the northwestern Pacific Ocean: Three-dimensional eddy structures and heat/salt transports. Journal of Geophysical Research: Oceans, 122(12): 9795–9813, doi: 10.1002/2017JC013303
|
Everett J D, Baird M E, Oke P R, et al. 2012. An avenue of eddies: Quantifying the biophysical properties of mesoscale eddies in the Tasman Sea. Geophysical Research Letters, 39(16): L16608, doi: 10.1029/2012GL053091
|
Fernandes A, Nascimento S. 2006. Automatic water eddy detection in SST maps using random ellipse fitting and vectorial fields for image segmentation. In: Proceedings of the 9th International Conference on Discovery Science. Barcelona, Spain: Springer, 77–88, doi: 10.1007/118933318_11
|
Frenger I, Münnich M, Gruber N, et al. 2015. Southern Ocean eddy phenomenology. Journal of Geophysical Research: Oceans, 120(11): 7413–7449, doi: 10.1002/2015JC011047
|
Gaube P, Chelton D B, Samelson R M, et al. 2015. Satellite observations of mesoscale eddy-induced Ekman pumping. Journal of Physical Oceanography, 45(1): 104–132, doi: 10.1175/JPO-D-14-0032.1
|
Itoh S, Yasuda I. 2010a. Water mass structure of warm and cold anticyclonic eddies in the western boundary region of the subarctic North Pacific. Journal of Physical Oceanography, 40(12): 2624–2642, doi: 10.1175/2010JPO4475.1
|
Itoh S, Yasuda I. 2010b. Characteristics of mesoscale eddies in the Kuroshio-Oyashio Extension region detected from the distribution of the sea surface height anomaly. Journal of Physical Oceanography, 40(5): 1018–1034, doi: 10.1175/2009JPO4265.1
|
Ji Jinlin, Dong Changming, Zhang Biao, et al. 2017. An oceanic eddy statistical comparison using multiple observational data in the Kuroshio Extension region. Acta Oceanologica Sinica, 36(3): 1–7, doi: 10.1007/s13131-016-0882-1
|
Ji Jinlin, Dong Changming, Zhang Biao, et al. 2018. Oceanic eddy characteristics and generation mechanisms in the Kuroshio Extension region. Journal of Geophysical Research: Oceans, 123(11): 8548–8567, doi: 10.1029/2018JC014196
|
Kouketsu S, Kaneko H, Okunishi T, et al. 2016. Mesoscale eddy effects on temporal variability of surface chlorophyll a in the Kuroshio Extension. Journal of Oceanography, 72(3): 439–451, doi: 10.1007/s10872-015-0286-4
|
Liu Yingjie, Zheng Quanan, Li Xiaofeng. 2021. Characteristics of global ocean abnormal mesoscale eddies derived from the fusion of sea surface height and temperature data by deep learning. Geophysical Research Letters, 48(17): e2021GL094772, doi: 10.1029/2021GL094772
|
Lv Mingkun, Wang Fan, Li Yuanlong, et al. 2022. Structure of sea surface temperature anomaly induced by mesoscale eddies in the North Pacific Ocean. Journal of Geophysical Research: Oceans, 127(3): e2021JC017581, doi: 10.1029/2021JC017581
|
Ma Jing, Xu Haiming, Dong Changming, et al. 2015. Atmospheric responses to oceanic eddies in the Kuroshio Extension region. Journal of Geophysical Research: Atmospheres, 120(13): 6313–6330, doi: 10.1002/2014JD022930
|
Mathis J T, Pickart R S, Hansell D A, et al. 2007. Eddy transport of organic carbon and nutrients from the Chukchi shelf: impact on the upper halocline of the western Arctic Ocean. Journal of Geophysical Research: Oceans, 112(C5): C05011, doi: 10.1029/2006JC003899
|
Ni Qinbiao, Zhai Xiaoming, Jiang Xuemin, et al. 2021. Abundant cold anticyclonic eddies and warm cyclonic eddies in the global ocean. Journal of Physical Oceanography, 51(9): 2793–2806, doi: 10.1175/JPO-D-21-0010.1
|
Ni Qinbiao, Zhai Xiaoming, Yang Zhibin, et al. 2023. Generation of cold anticyclonic eddies and warm cyclonic eddies in the tropical oceans. Journal of Physical Oceanography, 53(6): 1485–1498, doi: 10.1175/JPO-D-22-0197.1
|
Pegliasco C, Delepoulle A, Mason E, et al. 2022. META3.1exp: a new global mesoscale eddy trajectory atlas derived from altimetry. Earth System Science Data, 14(3): 1087–1107, doi: 10.5194/essd-14-1087-2022
|
Qiu Bo, Chen Shuiming, Schneider N. 2017. Dynamical links between the decadal variability of the Oyashio and Kuroshio extensions. Journal of Climate, 30(23): 9591–9605, doi: 10.1175/JCLI-D-17-0397.1
|
Renault L, Masson S, Oerder V, et al. 2019. Disentangling the mesoscale ocean-atmosphere interactions. Journal of Geophysical Research: Oceans, 124(3): 2164–2178, doi: 10.1029/2018JC01 4628
|
Shan Xuan, Jing Zhao, Gan Bolan, et al. 2020a. Surface heat flux induced by mesoscale eddies cools the Kuroshio-Oyashio Extension region. Geophysical Research Letters, 47(1): e2019GL086050, doi: 10.1029/2019GL086050
|
Shan Xuan, Jing Zhao, Sun Bingrong, et al. 2020b. Impacts of ocean current-atmosphere interactions on mesoscale eddy energetics in the Kuroshio Extension region. Geoscience Letters, 7(1): 3, doi: 10.1186/s40562-020-00152-w
|
Sun Wenjin, Dong Changming, Tan Wei, et al. 2019a. Statistical characteristics of cyclonic warm-core eddies and anticyclonic cold-core eddies in the North Pacific based on remote sensing data. Remote Sensing, 11(2): 208, doi: 10.3390/rs11020208
|
Sun Shuangwen, Fang Yue, Zu Yongcan, et al. 2020. Seasonal characteristics of mesoscale coupling between the sea surface temperature and wind speed in the South China Sea. Journal of Climate, 33(2): 625–638, doi: 10.1175/JCLI-D-19-0392.1
|
Sun Bowen, Li Baofu, Yan Jingyu, et al. 2022. Seasonal variation of atmospheric coupling with oceanic mesoscale eddies in the North Pacific Subtropical Countercurrent. Acta Oceanologica Sinica, 41(10): 109–118, doi: 10.1007/s13131-022-2022-4
|
Sun Wenjin, Liu Yu, Chen Gengxin, et al. 2021. Three-dimensional properties of mesoscale cyclonic warm-core and anticyclonic cold-core eddies in the South China Sea. Acta Oceanologica Sinica, 40(10): 17–29, doi: 10.1007/s13131-021-1770-x
|
Sun Bowen, Liu Chuanyu, Wang Fan. 2019b. Global meridional eddy heat transport inferred from Argo and altimetry observations. Scientific Reports, 9(1): 1345, doi: 10.1038/s41598-018-38069-2
|
Xu Quanqian, Xu Haiming, Ma Jing. 2018. Air-sea relationship associated with mesoscale oceanic eddies over the subtropical North Pacific in summer. Chinese Journal of Atmospheric Sciences (in Chinese), 42(6): 1191–1207, doi: 10.3878/j.issn.1006-9895.1711.17180
|
Yang Haiyuan, Qiu Bo, Chang Ping, et al. 2018. Decadal variability of eddy characteristics and energetics in the Kuroshio Extension: Unstable versus stable states. Journal of Geophysical Research: Oceans, 123(9): 6653–6669, doi: 10.1029/2018JC014081
|
Yang Guang, Yu Weidong, Yuan Yeli, et al. 2015. Characteristics, vertical structures, and heat/salt transports of mesoscale eddies in the southeastern tropical Indian Ocean. Journal of Geophysical Research: Oceans, 120(10): 6733–6750, doi: 10.1002/2015JC 011130
|
Yang Guangbing, Zheng Quanan, Xiong Xuejun. 2023. Subthermocline eddies carrying the Indonesian Throughflow water observed in the southeastern tropical Indian Ocean. Acta Oceanologica Sinica, 42(5): 1–13, doi: 10.1007/s13131-022-2085-2
|
Yao Hengkai, Ma Chao, Jing Zhao, et al. 2023. On the vertical structure of mesoscale eddies in the Kuroshio-Oyashio Extension. Geophysical Research Letters, 50(24): e2023GL105642, doi: 10.1029/2023GL105642
|
Yu Fangjie, Wang Zeyuan, Liu Shuai, et al. 2021. Inversion of the three-dimensional temperature structure of mesoscale eddies in the Northwest Pacific based on deep learning. Acta Oceanologica Sinica, 40(10): 176–186, doi: 10.1007/s13131-021-1841-z
|
Zu Yongcan, Sun Shuangwen, Zhao Wei, et al. 2019. Seasonal characteristics and formation mechanism of the thermohaline structure of mesoscale eddy in the South China Sea. Acta Oceanologica Sinica, 38(4): 29–38, doi: 10.1007/s13131-018-1222-4
|