Citation: | Mingliang Liu, Zemin Wang, Baojun Zhang, Xiangyu Song, Jiachun An. The variation in basal channels and basal melt rates of Pine Island Ice Shelf[J]. Acta Oceanologica Sinica, 2024, 43(1): 22-34. doi: 10.1007/s13131-023-2271-x |
Adusumilli S, Fricker H A, Siegfried M R, et al. 2018. Variable basal melt rates of Antarctic Peninsula ice shelves, 1994–2016. Geophysical Research Letters, 45(9): 4086–4095, doi: 10.1002/2017GL076652
|
Alley R B, Clark P U, Huybrechts P, et al. 2005. Ice-sheet and sea-level changes. Science, 310(5747): 456–460, doi: 10.1126/science.1114613
|
Alley K E, Scambos T A, Siegfried M R, et al. 2016. Impacts of warm water on Antarctic ice shelf stability through basal channel formation. Nature Geoscience, 9(4): 290–293, doi: 10.1038/ngeo2675
|
Bindschadler R, Vaughan D G, Vornberger P. 2011. Variability of basal melt beneath the Pine Island Glacier ice shelf, West Antarctica. Journal of Glaciology, 57(204): 581–595, doi: 10.3189/002214311797409802
|
Bintanja R, van Oldenborgh G J, Drijfhout S S, et al. 2013. Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nature Geoscience, 6(5): 376–379, doi: 10.1038/ngeo1767
|
Borsa A A, Moholdt G, Fricker H A, et al. 2014. A range correction for ICESat and its potential impact on ice-sheet mass balance studies. The Cryosphere, 8(2): 345–357, doi: 10.5194/tc-8-345-2014
|
Bradley A T, Bett D T, Dutrieux P, et al. 2022. The influence of Pine Island Ice Shelf calving on basal melting. Journal of Geophysical Research: Oceans, 127(9): e2022JC018621, doi: 10.1029/2022JC018621
|
Chartrand A M, Howat I M. 2020. Basal channel evolution on the Getz ice shelf, west Antarctica. Journal of Geophysical Research: Earth Surface, 125(9): e2019JF005293, doi: 10.1029/2019JF005293
|
Cornford S L, Martin D F, Payne A J, et al. 2015. Century-scale simulations of the response of the West Antarctic Ice Sheet to a warming climate. The Cryosphere, 9(4): 1579–1600, doi: 10.5194/tc-9-1579-2015
|
Davis P E D, Jenkins A, Nicholls K W, et al. 2018. Variability in basal melting beneath Pine Island Ice Shelf on weekly to monthly timescales. Journal of Geophysical Research: Oceans, 123(11): 8655–8669, doi: 10.1029/2018JC014464
|
De Rydt J, Holland P R, Dutrieux P, et al. 2014. Geometric and oceanographic controls on melting beneath Pine Island Glacier. Journal of Geophysical Research: Oceans, 119(4): 2420–2438, doi: 10.1002/2013JC009513
|
Dotto T S, Garabato A C N, Bacon S, et al. 2019. Wind-driven processes controlling oceanic heat delivery to the Amundsen Sea, Antarctica. Journal of Physical Oceanography, 49(11): 2829–2849, doi: 10.1175/JPO-D-19-0064.1
|
Dutrieux P, De Rydt J, Jenkins A, et al. 2014. Strong sensitivity of Pine Island ice-shelf melting to climatic variability. Science, 343(6167): 174–178, doi: 10.1126/science.1244341
|
Farrell S L, Kurtz N, Connor L N, et al. 2012. A first assessment of IceBridge snow and ice thickness data over Arctic sea ice. IEEE Transactions on Geoscience and Remote Sensing, 50(6): 2098–2111, doi: 10.1109/TGRS.2011.2170843
|
Favier L, Durand G, Cornford S L, et al. 2014. Retreat of Pine Island Glacier controlled by marine ice-sheet instability. Nature Climate Change, 4(2): 117–121, doi: 10.1038/nclimate2094
|
Fricker H A, Padman L. 2006. Ice shelf grounding zone structure from ICESat laser altimetry. Geophysical Research Letters, 33(15): L15502, doi: 10.1029/2006gl026907
|
Fricker H A, Padman L. 2012. Thirty years of elevation change on Antarctic Peninsula ice shelves from multi mission satellite radar altimetry. Journal of Geophysical Research: Oceans, 117(C2): C02026, doi: 10.1029/2011JC007126
|
Gardner A S, Fahnestock M A, Scambos T A. 2019. [update to time of data download]: MEaSUREs ITS_LIVE landsat image-pair glacier and ice sheet surface velocities: version 1. Data archived at National Snow and Ice Data Center, doi: 10.5067/IMR9D3PEI28U, https://its-live.jpl.nasa.gov/[2023-01-23]
|
Good S A, Martin M J, Rayner N A. 2013. EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. Journal of Geophysical Research: Oceans, 118(12): 6704–6716, doi: 10.1002/2013JC009067
|
Goward S N, Masek J G, Williams D L, et al. 2001. The Landsat 7 mission: terrestrial research and applications for the 21st century. Remote Sensing of Environment, 78(1–2): 3–12, doi: 10.1016/S0034-4257(01)00262-0
|
Gregg M C. 1987. Diapycnal mixing in the thermocline: a review. Journal of Geophysical Research: Oceans, 92(C5): 5249–5286, doi: 10.1029/JC092iC05p05249
|
Hersbach H, Bell B, Berrisford P, et al. 2019. ERA5 monthly averaged data on single levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), 10: 24381
|
Howat I M, Porter C, Smith B E, et al. 2019. The reference elevation model of Antarctica. The Cryosphere, 13(2): 665–674, doi: 10.5194/tc-13-665-2019
|
Jacobs S S, Hellmer H H, Jenkins A. 1996. Antarctic ice sheet melting in the southeast Pacific. Geophysical Research Letters, 23(9): 957–960, doi: 10.1029/96GL00723
|
Joughin I, Smith B E, Holland D M. 2010. Sensitivity of 21st century sea level to ocean-induced thinning of Pine Island Glacier, Antarctica. Geophysical Research Letters, 37(20): L20502, doi: 10.1029/2010GL044819
|
Joughin I, Smith B E, Medley B. 2014. Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica. Science, 344(6185): 735–738, doi: 10.1126/science.1249055
|
Joughin I, Smith B E, Schoof C G. 2019. Regularized coulomb friction laws for ice sheet sliding: application to Pine Island Glacier, Antarctica. Geophysical Research Letters, 46(9): 4764–4771, doi: 10.1029/2019GL082526
|
Kerr R C, McConnochie C D. 2015. Dissolution of a vertical solid surface by turbulent compositional convection. Journal of Fluid Mechanics, 765: 211–228, doi: 10.1017/jfm.2014.722
|
Kurtz N T, Farrell S L. 2011. Large-scale surveys of snow depth on Arctic sea ice from Operation IceBridge. Geophysical Research Letters, 38(20): L20505, doi: 10.1029/2011GL049216
|
Liang Qi, Zhou Chunxia, Zheng Lei. 2021. Mapping basal melt under the Shackleton ice shelf, East Antarctica, from CryoSat-2 radar altimetry. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14: 5091–5099, doi: 10.1109/JSTARS.2021.3077359
|
Ligtenberg S R M, Kuipers Munneke P, van den Broeke M R. 2014. Present and future variations in Antarctic firn air content. The Cryosphere, 8(5): 1711–1723, doi: 10.5194/tc-8-1711-2014
|
Liu Yan, Moore J C, Cheng Xiao, et al. 2015. Ocean-driven thinning enhances iceberg calving and retreat of Antarctic ice shelves. Proceedings of the National Academy of Sciences of the United States of America, 112(11): 3263–3268, doi: 10.1073/pnas.1415137112
|
Liu Zhiwei, Zhu Jianjun, Fu Haiqiang, et al. 2020. Evaluation of the vertical accuracy of open global DEMs over steep terrain regions using ICESat data: a case study over Hunan Province, China. Sensors, 20(17): 4865, doi: 10.3390/s20174865
|
Logan L, Catania G, Lavier L, et al. 2013. A novel method for predicting fracture in floating ice. Journal of Glaciology, 59(216): 750–758, doi: 10.3189/2013JoG12J210
|
Markus T, Neumann T, Martino A, et al. 2017. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation. Remote Sensing of Environment, 190: 260–273, doi: 10.1016/j.rse.2016.12.029
|
McGrath D, Steffen K, Rajaram H, et al. 2012. Basal crevasses on the Larsen C Ice Shelf, Antarctica: implications for meltwater ponding and hydrofracture. Geophysical Research Letters, 39(16): L16504, doi: 10.1029/2012GL052413
|
Moholdt G, Padman L, Fricker H A. 2014. Basal mass budget of Ross and Filchner-Ronne ice shelves, Antarctica, derived from Lagrangian analysis of ICESat altimetry. Journal of Geophysical Research: Earth Surface, 119(11): 2361–2380, doi: 10.1002/2014JF003171
|
Morlighem M, Rignot E J, Binder T, et al. 2018. BedMachine Antarctica v1: a new subglacial bed topography and ocean bathymetry dataset of Antarctica combining mass conservation, gravity inversion and streamline diffusion. In: Proceedings of the American Geophysical Union, Fall Meeting 2018. Washington: AGU
|
Nias I J, Cornford S L, Payne A J. 2016. Contrasting the modelled sensitivity of the Amundsen Sea Embayment ice streams. Journal of Glaciology, 62(233): 552–562, doi: 10.1017/jog.2016.40
|
Noh M J, Howat I M. 2017. The surface extraction from TIN based search-space minimization (SETSM) algorithm. ISPRS Journal of Photogrammetry and Remote Sensing, 129: 55–76, doi: 10.1016/j.isprsjprs.2017.04.019
|
Paolo F S, Fricker H A, Padman L. 2015. Volume loss from Antarctic ice shelves is accelerating. Science, 348(6232): 327–331, doi: 10.1126/science.aaa0940
|
Paolo F S, Padman L, Fricker H A, et al. 2018. Response of Pacific-sector Antarctic ice shelves to the El Niño/Southern oscillation. Nature Geoscience, 11(2): 121–126, doi: 10.1038/s41561-017-0033-0
|
Payne A J, Vieli A, Shepherd A P, et al. 2004. Recent dramatic thinning of largest West Antarctic ice stream triggered by oceans. Geophysical Research Letters, 31(23): L23401, doi: 10.1029/2004GL021284
|
Pritchard H D, Ligtenberg S R M, Fricker H A, et al. 2012. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature, 484(7395): 502–505, doi: 10.1038/nature10968
|
Rignot E, Mouginot J, Scheuchl B, et al. 2019. Four decades of Antarctic Ice Sheet mass balance from 1979–2017. Proceedings of the National Academy of Sciences of the United States of America, 116(4): 1095–1103, doi: 10.1073/pnas.1812883116
|
Rignot E, Steffen K. 2008. Channelized bottom melting and stability of floating ice shelves. Geophysical Research Letters, 35(2): L02503, doi: 10.1029/2007GL031765
|
Rosevear M G, Gayen B, Galton-Fenzi B K. 2022. Regimes and transitions in the basal melting of Antarctic ice shelves. Journal of Physical Oceanography, 52(10): 2589–2608, doi: 10.1175/JPO-D-21-0317.1
|
Roy D P, Wulder M A, Loveland T R, et al. 2014. Landsat-8: science and product vision for terrestrial global change research. Remote Sensing of Environment, 145: 154–172, doi: 10.1016/j.rse.2014.02.001
|
Schmidt B E, Washam P, Davis P E D, et al. 2023. Heterogeneous melting near the Thwaites Glacier groundingline. Nature, 614(7948): 471–478, doi: 10.1038/s41586-022-05691-0
|
Seroussi H, Morlighem M, Rignot E, et al. 2014. Sensitivity of the dynamics of Pine Island Glacier, West Antarctica, to climate forcing for the next 50 years. The Cryosphere, 8(5): 1699–1710, doi: 10.5194/tc-8-1699-2014
|
Seroussi H, Nakayama Y, Larour E, et al. 2017. Continued retreat of Thwaites Glacier, West Antarctica, controlled by bed topography and ocean circulation. Geophysical Research Letters, 44(12): 6191–6199, doi: 10.1002/2017GL072910
|
Shean D E, Joughin I R, Dutrieux P, et al. 2019. Ice shelf basal melt rates from a high-resolution digital elevation model (DEM) record for Pine Island Glacier, Antarctica. The Cryosphere, 13(10): 2633–2656, doi: 10.5194/tc-13-2633-2019
|
Shepherd A, Fricker H A, Farrell S L. 2018. Trends and connections across the Antarctic cryosphere. Nature, 558(7709): 223–232, doi: 10.1038/s41586-018-0171-6
|
Shepherd A, Wingham D, Payne T, et al. 2003. Larsen ice shelf has progressively thinned. Science, 302(5646): 856–859, doi: 10.1126/science.1089768
|
Silvano A, Rintoul S R, Herraiz-Borreguero L. 2016. Ocean-ice shelf interaction in East Antarctica. Oceanography, 29(4): 130–143, doi: 10.5670/oceanog.2016.105
|
Stanton T P, Shaw W J, Truffer M, et al. 2013. Channelized ice melting in the ocean boundary layer beneath Pine Island Glacier, Antarctica. Science, 341(6151): 1236–1239, doi: 10.1126/science.1239373
|
Steig E J, Ding Q, Battisti D S, et al. 2012. Tropical forcing of Circumpolar Deep Water inflow and outlet glacier thinning in the Amundsen Sea Embayment, West Antarctica. Annals of Glaciology, 53(60): 19–28, doi: 10.3189/2012AoG60A110
|
Suga Y, Ogawa H, Ohno K, et al. 2003. Detection of surface temperature from Landsat-7/ETM+. Advances in Space Research, 32(11): 2235–2240, doi: 10.1016/S0273-1177(03)90548-5
|
Tang Chengjia, Li Yuansheng, Chen Zhenlou, et al. 2008. A review on studies of Antarctic ice shelves and advances in Chinese research on Amery ice shelf. Chinese Journal of Polar Research (in Chinese), 20(3): 265–274
|
Thoma M, Jenkins A, Holland D, et al. 2008. Modelling circumpolar deep water intrusions on the Amundsen Sea continental shelf, Antarctica. Geophysical Research Letters, 35(18): L18602, doi: 10.1029/2008GL034939
|
van Wessem J M, van de Berg W J, Noël B P Y, et al. 2018. Modelling the climate and surface mass balance of polar ice sheets using RACMO2–Part 2: Antarctica (1979–2016). The Cryosphere, 12(4): 1479–1498, doi: 10.5194/tc-12-1479-2018
|
Vaughan D G, Corr H F J, Bindschadler R A, et al. 2012. Subglacial melt channels and fracture in the floating part of Pine Island Glacier, Antarctica. Journal of Geophysical Research: Earth Surface, 117(F3): F03012, doi: 10.1029/2012JF002360
|
Vermote E, Justice C, Claverie M, et al. 2016. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sensing of Environment, 185: 46–56, doi: 10.1016/j.rse.2016.04.008
|
Wåhlin A K, Yuan X, Björk G, et al. 2010. Inflow of warm circumpolar deep water in the central Amundsen shelf. Journal of Physical Oceanography, 40(6): 1427–1434, doi: 10.1175/2010JPO4431.1
|
Walker D P, Jenkins A, Assmann K M, et al. 2013. Oceanographic observations at the shelf break of the Amundsen Sea, Antarctica. Journal of Geophysical Research: Oceans, 118(6): 2906–2918, doi: 10.1002/jgrc.20212
|
Wang Xianwei, Gong Peng, Zhao Yuanyuan, et al. 2013. Water-level changes in China’s large lakes determined from ICESat/GLAS data. Remote Sensing of Environment, 132: 131–144, doi: 10.1016/j.rse.2013.01.005
|
Wang Zemin, Song Xiangyu, Zhang Baojun, et al. 2020. Basal channel extraction and variation analysis of Nioghalvfjerdsfjorden ice shelf in Greenland. Remote Sensing, 12(9): 1474, doi: 10.3390/rs12091474
|
WCRP Global Sea Level Budget Group. 2018. Global sea-level budget 1993-present. Earth System Science Data, 10(3): 1551–1590, doi: 10.5194/essd-10-1551-2018
|