Citation: | Feng Nan, Zhuolin Li, Jie Yu, Suixiang Shi, Xinrong Wu, Lingyu Xu. Prediction of three-dimensional ocean temperature in the South China Sea based on time series gridded data and a dynamic spatiotemporal graph neural network[J]. Acta Oceanologica Sinica, 2024, 43(7): 26-39. doi: 10.1007/s13131-023-2252-0 |
Aparna S G, D’souza S, Arjun N B. 2018. Prediction of daily sea surface temperature using artificial neural networks. International Journal of Remote Sensing, 39(12): 4214–4231, doi: 10.1080/01431161.2018.1454623
|
Barnston A G, Tippett M K, Ranganathan M, et al. 2019. Deterministic skill of ENSO predictions from the North American Multimodel Ensemble. Climate Dynamics, 53(12): 7215–7234, doi: 10.1007/s00382-017-3603-3
|
Collins D C, Reason C J C, Tangang F. 2004. Predictability of Indian Ocean sea surface temperature using canonical correlation analysis. Climate Dynamics, 22(5): 481–497, doi: 10.1007/s00382-004-0390-4
|
Dong Yihe, Cordonnier J B, Loukas A. 2021. Attention is not all you need: Pure attention loses rank doubly exponentially with depth. In: Proceedings of the 38th International Conference on Machine Learning. PMLR, 2793–2803
|
Gao Ziheng, Li Zhuolin, Yu Jie, et al. 2023. Global spatiotemporal graph attention network for sea surface temperature prediction. IEEE Geoscience and Remote Sensing Letters, 20: 1500905
|
Garcia-Gorriz E, Garcia-Sanchez J. 2007. Prediction of sea surface temperatures in the western Mediterranean Sea by neural networks using satellite observations. Geophysical Research Letters, 34(11): L11603
|
Glorot X, Bordes A, Bengio Y. 2011. Deep sparse rectifier neural networks. In: Proceedings of the 14th International Conference on Artificial Intelligence and Statistics. Fort Lauderdale, 315–323
|
Guo Shengnan, Lin Youfang, Feng Ning, et al. 2019. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence. Honolulu: AAAI Press, 922–929
|
He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 770–778
|
Kipf T N, Welling M. 2017. Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv: 1609.02907
|
Krishnamurti T N, Chakraborty A, Krishnamurti R, et al. 2006. Seasonal prediction of sea surface temperature anomalies using a suite of 13 coupled atmosphere-ocean models. Journal of Climate, 19(23): 6069–6088, doi: 10.1175/JCLI3938.1
|
Laepple T, Jewson S. 2007. Five year ahead prediction of Sea Surface Temperature in the Tropical Atlantic: a comparison between IPCC climate models and simple statistical methods. arXiv preprint physics/0701165, 补充网址[YYYY-MM-DD/ YYYY-MM-DD]
|
Li Yaguang, Yu R, Shahabi C, et al. 2017. Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. arXiv preprint arXiv: 1707.01926, 补充网址[YYYY-MM-DD/ YYYY-MM-DD]
|
Li Zhuolin, Yu Jie, Zhang Xiaolin, et al. 2022. A multi-hierarchical attention-based prediction method on time series with spatio-temporal context among variables. Physica A:Statistical Mechanics and its Applications, 602: 127664, doi: 10.1016/j.physa.2022.127664
|
Lins I D, Araujo M, das Chagas Moura M, et al. 2013. Prediction of sea surface temperature in the tropical Atlantic by support vector machines. Computational Statistics & Data Analysis, 61: 187–198
|
Liu Meng, Gao Hongyang, Ji Shuiwang. 2020. Towards deeper graph neural networks. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. USA: ACM, 338–348
|
Luo Jingjia, Masson S, Behera S, et al. 2005. Seasonal climate predictability in a coupled OAGCM using a different approach for ensemble forecasts. Journal of Climate, 18(21): 4474–4497, doi: 10.1175/JCLI3526.1
|
Mendoza V M, Villanueva E E, Adem J. 1997. Numerical experiments on the prediction of sea surface temperature anomalies in the Gulf of Mexico. Journal of marine systems, 13(1−4): 83–99, doi: 10.1016/S0924-7963(96)00120-0
|
Neelin J D. 1990. A hybrid coupled general circulation model for El Niño studies. Journal of the Atmospheric Sciences, 47(5): 674–693, doi: 10.1175/1520-0469(1990)047<0674:AHCGCM>2.0.CO;2
|
Patil K, Deo M C, Ghosh S, et al. 2013. Predicting sea surface temperatures in the North Indian Ocean with nonlinear autoregressive neural networks. International Journal of Oceanography, 2013: 302479
|
Patil K, Deo M C, Ravichandran M. 2016. Prediction of sea surface temperature by combining numerical and neural techniques. Journal of Atmospheric and Oceanic Technology, 33(8): 1715–1726, doi: 10.1175/JTECH-D-15-0213.1
|
Shi Lei, Zhang Yofan, Cheng Jian, et al. 2019. Two-stream adaptive graph convolutional networks for skeleton-based action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 12026–12035
|
Solanki H U, Bhatpuria D, Chauhan P. 2015. Signature analysis of satellite derived SSHa, SST and chlorophyll concentration and their linkage with marine fishery resources. Journal of Marine Systems, 150: 12–21, doi: 10.1016/j.jmarsys.2015.05.004
|
Stockdale T N, Balmaseda M A, Vidard A. 2006. Tropical Atlantic SST prediction with coupled ocean-atmosphere GCMs. Journal of Climate, 19(23): 6047–6061, doi: 10.1175/JCLI3947.1
|
Sumner M D, Michael K J, Bradshaw C J A, et al. 2003. Remote sensing of Southern Ocean sea surface temperature: Implications for marine biophysical models. Remote Sensing of Environment, 84(2): 161–173, doi: 10.1016/S0034-4257(02)00103-7
|
Sun Yongjiao, Yao Xin, Bi Xin, et al. 2021. Time-series graph network for sea surface temperature prediction. Big Data Research, 25: 100237, doi: 10.1016/j.bdr.2021.100237
|
Sun Weifu, Zhang Jie, Meng Junmin, et al. 2019. Sea surface temperature characteristics and trends in China offshore seas from 1982 to 2017. Journal of Coastal Research, 90(SI): 27–34
|
Szegedy C, Liu Wei, Jia Yangqing, et al. 2015. Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 1–9
|
Vaswani A, Shazeer N, Parmar N, et al. 2017. Attention is all you need. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc
|
Wang Tingting, Li Zhuolin, Geng Xiulin, et al. 2022. Time series prediction of sea surface temperature based on an adaptive graph learning neural model. Future Internet, 14(6): 171, doi: 10.3390/fi14060171
|
Wentz F J, Gentemann C, Smith D, et al. 2000. Satellite measurements of sea surface temperature through clouds. Science, 288(5467): 847–850, doi: 10.1126/science.288.5467.847
|
Wu Zonghan, Pan Shirui, Long Guodong, et al. 2020. Connecting the dots: Multivariate time series forecasting with graph neural networks. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. USA: ACM, 753–763
|
Xiao Changjiang, Chen Nengcheng, Hu Chuli, et al. 2019. A spatiotemporal deep learning model for sea surface temperature field prediction using time-series satellite data. Environmental Modelling & Software, 120: 104502
|
Xiao Lin, Shi Jian, Jiang Guorong, et al. 2018. The influence of ocean waves on sea surface current field and sea surface temperature under the typhoon background. Marine Science Bulletin (in Chinese), 37(4): 396–403
|
Xie J, Zhang J Y, Yu J, et al. 2020. An adaptive scale sea surface temperature predicting method based on deep learning with attention mechanism. IEEE Geoscience and Remote Sensing Letters, 17(5): 740–744, doi: 10.1109/LGRS.2019.2931728
|
Xiong Ruibin, Yang Yunchang, He Di, et al. 2020. On layer normalization in the transformer architecture. In: Proceedings of the 37th International Conference on Machine Learning. JMLR. org, 10524–10533
|
Xue Yan, Leetmaa A. 2000. Forecasts of tropical Pacific SST and sea level using a Markov model. Geophysical Research Letters, 27(17): 2701–2704, doi: 10.1029/1999GL011107
|
Yang Yuting, Dong Junyu, Sun Xin, et al. 2018. A CFCC-LSTM model for sea surface temperature prediction. IEEE Geoscience and Remote Sensing Letters, 15(2): 207–211, doi: 10.1109/LGRS.2017.2780843
|
Yu F, Koltun V. 2016. Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv: 1511.07122补充网址[YYYY-MM-DD/ YYYY-MM-DD]
|
Zhang Kun, Geng Xupu, Yan Xiaohai. 2020a. Prediction of 3-D ocean temperature by multilayer convolutional LSTM. IEEE Geoscience and Remote Sensing Letters, 17(8): 1303–1307, doi: 10.1109/LGRS.2019.2947170
|
Zhang Xiaoyu, Li Yongqing, Frery A C, et al. 2022. Sea surface temperature prediction with memory graph convolutional networks. IEEE Geoscience and Remote Sensing Letters, 19: 8017105
|
Zhang Zhen, Pan Xinliang, Jiang Tao, et al. 2020b. Monthly and quarterly sea surface temperature prediction based on gated recurrent unit neural network. Journal of Marine Science and Engineering, 8(4): 249, doi: 10.3390/jmse8040249
|
Zhang Qin, Wang Hui, Dong Junyu, et al. 2017. Prediction of sea surface temperature using long short-term memory. IEEE Geoscience and Remote Sensing Letters, 14(10): 1745–1749, doi: 10.1109/LGRS.2017.2733548
|
Zuo Xinyi, Zhou Xiaofeng, Guo Daquan, et al. 2022. Ocean temperature prediction based on stereo spatial and temporal 4-D convolution model. IEEE Geoscience and Remote Sensing Letters, 19: 1003405
|