Volume 42 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
Wei Yang, Ruixiang Li, Yanqing Feng, Huijie Xue. Cross-shelf variation of internal tides west of the Dongsha Plateau in the northern South China Sea[J]. Acta Oceanologica Sinica, 2023, 42(10): 23-35. doi: 10.1007/s13131-023-2251-1
Citation: Wei Yang, Ruixiang Li, Yanqing Feng, Huijie Xue. Cross-shelf variation of internal tides west of the Dongsha Plateau in the northern South China Sea[J]. Acta Oceanologica Sinica, 2023, 42(10): 23-35. doi: 10.1007/s13131-023-2251-1

Cross-shelf variation of internal tides west of the Dongsha Plateau in the northern South China Sea

doi: 10.1007/s13131-023-2251-1
Funds:  The Key-Area Research and Development Project of Guangdong Province under contract No. 2020B1111020003; the Science and Technology Plan Projects of Guangdong Province under contract No. 2021B1212050025; the Science and Technology Development Fund of the South China Sea Bureau, Ministry of Natural Resources under contract No. 202205.
More Information
  • Corresponding author: E-mail: hjxue@xmu.edu.cn
  • Received Date: 2023-02-27
  • Accepted Date: 2023-05-12
  • Available Online: 2023-12-01
  • Publish Date: 2023-10-01
  • We examine the cross-shelf variation of internal tides (ITs) west of the Dongsha Plateau in the northern South China Sea based on observations from 4 moorings deployed between August 2017 and September 2018. On the slope, the amplitude of diurnal baroclinic current ellipses are 5 times larger than that of barotropic currents. The baroclinic energy quickly dissipates during cross-shelf propagation, and barotropic currents become dominant on the shelf outside of the Zhujiang River Estuary, with the amplitude of semidiurnal barotropic current ellipses being 10 times larger than that of the baroclinic ones. Dynamic modal decomposition indicates the first baroclinic mode is dominant for both diurnal and semidiurnal ITs. The total horizontal kinetic energy (HKE) of the first three baroclinic modes shows spatiotemporal differences among the 4 moorings. On the slope, the HKE for diurnal ITs is stronger in summer and winter, but weaker in spring and autumn; for semidiurnal ITs there is a similar seasonal variation, but the HKE in winter is even stronger than that in summer. On the shallow shelf, both diurnal and semidiurnal ITs maintain a certain intensity in summer but almost disappear in winter. Further analysis shows that only the upper water column is affected by seasonal variation of stratification on the slope, variation of diurnal ITs is thus controlled by the semi-annual cycle of barotropic energy input from the Luzon Strait, while the incoherent baroclinic currents make a major contribution to the temporal variation of semidiurnal ITs. For the shelf region, the water column is well mixed in winter, and the baroclinic energy largely dissipates when ITs propagate to the shelf zone despite of a strong barotropic energy input from the Luzon Strait .
  • loading
  • Alford M H. 2003. Redistribution of energy available for ocean mixing by long-range propagation of internal waves. Nature, 423(6936): 159–162. doi: 10.1038/nature01628
    Alford M H, MacKinnon J A, Nash J D, et al. 2011. Energy flux and dissipation in Luzon Strait: two tales of two ridges. Journal of Physical Oceanography, 41(11): 2211–2222. doi: 10.1175/JPO-D-11-073.1
    Alford M H, Peacock T, MacKinnon J A, et al. 2015. The formation and fate of internal waves in the South China Sea. Nature, 521(7550): 65–69. doi: 10.1038/nature14399
    Beardsley R C, Duda T F, Lynch J F, et al. 2004. Barotropic tide in the northeast South China Sea. IEEE Journal of Oceanic Engineering, 29(4): 1075–1086. doi: 10.1109/joe.2004.833226
    Cao Anzhou, Guo Zheng, Lv Xianqing, et al. 2017. Coherent and incoherent features, seasonal behaviors and spatial variations of internal tides in the northern South China Sea. Journal of Marine Systems, 172: 75–83. doi: 10.1016/j.jmarsys.2017.03.005
    Chen Shengli, Chen Daoyi, Xing Jiuxing, et al. 2019. Features of internal tides observed near the shelf break in the northern South China Sea. Ocean Dynamics, 69(3): 353–365. doi: 10.1007/s10236-019-01248-4
    Duda T F, Lynch J F, Irish J D, et al. 2004. Internal tide and nonlinear internal wave behavior at the continental slope in the northern South China Sea. IEEE Journal of Oceanic Engineering, 29(4): 1105–1130. doi: 10.1109/joe.2004.836998
    Duda T F, Rainville L. 2008. Diurnal and semidiurnal internal tide energy flux at a continental slope in the South China Sea. Journal of Geophysical Research: Oceans, 113(C3): C03025. doi: 10.1029/2007JC004418
    Egbert G D, Erofeeva S Y. 2002. Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology, 19(2): 183–204. doi: 10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
    Eich M L, Merrifield M A, Alford M H. 2004. Structure and variability of semidiurnal internal tides in Mamala Bay, Hawaii. Journal of Geophysical Research: Oceans, 109(C5): C05010. doi: 10.1029/2003JC002049
    Fang Guohong, Kwok Y K, Yu Kejun, et al. 1999. Numerical simulation of principal tidal constituents in the South China Sea, Gulf of Tonkin and Gulf of Thailand. Continental Shelf Research, 19(7): 845–869. doi: 10.1016/s0278-4343(99)00002-3
    Farmer D, Li Qiang, Park J H. 2009. Internal wave observations in the South China Sea: the role of rotation and non-linearity. Atmosphere-Ocean, 47(4): 267–280. doi: 10.3137/OC313.2009
    Gan Jianping, Li Li, Wang Dongxiao, et al. 2009. Interaction of a river plume with coastal upwelling in the northeastern South China Sea. Continental Shelf Research, 29(4): 728–740. doi: 10.1016/j.csr.2008.12.002
    Garrett C, Kunze E. 2007. Internal tide generation in the deep ocean. Annual Review of Fluid Mechanics, 39: 57–87. doi: 10.1146/annurev.fluid.39.050905.110227
    Gill A E. 1982. Atmosphere-Ocean Dynamics. New York: Academic Press
    Guo Pu, Fang Wendong, Liu Changjian, et al. 2012. Seasonal characteristics of internal tides on the continental shelf in the northern South China Sea. Journal of Geophysical Research: Oceans, 117(C4): C04023. doi: 10.1029/2011JC007215
    Holloway P E, Chatwin P G, Craig P. 2001. Internal tide observations from the Australian North West shelf in Summer 1995. Journal of Physical Oceanography, 31(5): 1182–1199. doi: 10.1175/1520-0485(2001)031<1182:ITOFTA>2.0.CO;2
    Huang Xiaodong, Wang Zhaoyun, Zhang Zhiwei, et al. 2018. Role of mesoscale eddies in modulating the semidiurnal internal tide: observation results in the northern South China Sea. Journal of Physical Oceanography, 48(8): 1749–1770. doi: 10.1175/JPO-D-17-0209.1
    Jan Sen, Chern Ching-Sheng, Wang Joe, et al. 2007. Generation of diurnal K1 internal tide in the Luzon Strait and its influence on surface tide in the South China Sea. Journal of Geophysical Research: Oceans, 112(C6): C06019. doi: 10.1029/2006JC004003
    Jan Sen, Lien Ren-Chieh, Ting Chihua. 2008. Numerical study of baroclinic tides in Luzon Strait. Journal of Oceanography, 64(5): 789–802. doi: 10.1007/s10872-008-0066-5
    Jiang Shumin, Dai Dejun, Qiao Fangli, et al. 2019. The internal tides on continental shelf of the northern South China Sea. Oceanologia et Limnologia Sinica (in Chinese), 50(1): 1–11. doi: 10.11693/hyhz20180300046
    Kelly S M, Nash J D, Martini K I, et al. 2012. The cascade of tidal energy from low to high modes on a continental slope. Journal of Physical Oceanography, 42(7): 1217–1232. doi: 10.1175/JPO-D-11-0231.1
    Klymak J M, Alford M H, Pinkel R, et al. 2011. The breaking and scattering of the internal tide on a continental slope. Journal of Physical Oceanography, 41(5): 926–945. doi: 10.1175/2010JPO4500.1
    Li Bingtian, Wei Zexun, Wang Xinyi, et al. 2020. Variability of coherent and incoherent features of internal tides in the north South China Sea. Scientific Reports, 10(1): 12904. doi: 10.1038/s41598-020-68359-7
    Lien Ren-Chiel, Tang Tswen Yung, Chang Ming-Huei, et al. 2005. Energy of nonlinear internal waves in the South China Sea. Geophysical Research Letters, 32(5): L05615. doi: 10.1029/2004GL022012
    Liu Junliang, He Yinghui, Wang Dongxiao, et al. 2015. Observed enhanced internal tides in winter near the Luzon Strait. Journal of Geophysical Research: Oceans, 120(10): 6637–6652. doi: 10.1002/2015JC011131
    Liu Qian, Xie Xiaohui, Shang Xiaodong, et al. 2016. Coherent and incoherent internal tides in the southern South China Sea. Chinese Journal of Oceanology and Limnology, 34(6): 1374–1382. doi: 10.1007/s00343-016-5171-5
    Liu Qian, Xie Xiaohui, Shang Xiaodong, et al. 2019. Modal structure and propagation of internal tides in the northeastern South China Sea. Acta Oceanologica Sinica, 38(9): 12–23. doi: 10.1007/s13131-019-1473-1
    Ma Barry B, Lien Ren-Chiel, Ko Dong S. 2013. The variability of internal tides in the northern South China Sea. Journal of Oceanography, 69(5): 619–630. doi: 10.1007/s10872-013-0198-0
    Nash J D, Alford M H, Kunze E. 2005. Estimating internal wave energy fluxes in the ocean. Journal of Atmospheric and Oceanic Technology, 22(10): 1551–1570. doi: 10.1175/JTECH1784.1
    Niwa Y, Hibiya T. 2001. Numerical study of the spatial distribution of the M2 internal tide in the Pacific Ocean. Journal of Geophysical Research: Oceans, 106(C10): 22441–22449. doi: 10.1029/2000JC000770
    Niwa Y, Hibiya T. 2004. Three-dimensional numerical simulation of M2 internal tides in the East China Sea. Journal of Geophysical Research: Oceans, 109(C4): C04027. doi: 10.1029/2003JC001923
    Park J H, Andres M, Martin P J, et al. 2006. Second-mode internal tides in the East China Sea deduced from historical hydrocasts and a model. Geophysical Research Letters, 33(5): L05602. doi: 10.1029/2005GL024732
    Pawlowicz R, Beardsley B, Lentz S. 2002. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Computers & Geosciences, 28(8): 929–937. doi: 10.1016/S0098-3004(02)00013-4
    Rainville L, Pinkel R. 2006. Propagation of low-mode internal waves through the ocean. Journal of Physical Oceanography, 36(6): 1220–1236. doi: 10.1175/JPO2889.1
    Ramp S R, Tang T Y, Duda T F, et al. 2004. Internal solitons in the northeastern South China Sea. Part I: sources and deep water propagation. IEEE Journal of Oceanic Engineering, 29(4): 1157–1181. doi: 10.1109/JOE.2004.840839
    Shang Xiaodong, Liu Qian, Xie Xiaohui, et al. 2015. Characteristics and seasonal variability of internal tides in the southern South China Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 98: 43–52. doi: 10.1016/j.dsr.2014.12.005
    St. Laurent L, Garrett C. 2002. The role of internal tides in mixing the deep ocean. Journal of Physical Oceanography, 32(10): 2882–2899. doi: 10.1175/1520-0485(2002)032<2882:TROITI>2.0.CO;2
    Su Jilan. 2004. Overview of the South China Sea circulation and its influence on the coastal physical oceanography outside the Pearl River Estuary. Continental Shelf Research, 24(16): 1745–1760. doi: 10.1016/j.csr.2004.06.005
    Subeesh M P, Unnikrishnan A S. 2016. Observed internal tides and near-inertial waves on the continental shelf and slope off Jaigarh, central west coast of India. Journal of Marine Systems, 157: 1–19. doi: 10.1016/j.jmarsys.2015.12.005
    Tian Jiwei, Yang Qingxuan, Zhao Wei. 2009. Enhanced diapycnal mixing in the South China Sea. Journal of Physical Oceanography, 39(12): 3191–3203. doi: 10.1175/2009JPO3899.1
    Tian Jiwei, Zhou Lei, Zhang Xiaoqian. 2006. Latitudinal distribution of mixing rate caused by the M2 internal tide. Journal of Physical Oceanography, 36(1): 35–42. doi: 10.1175/JPO2824.1
    van Haren H. 2004. Incoherent internal tidal currents in the deep ocean. Ocean Dynamics, 54(1): 66–76. doi: 10.1007/s10236-003-0083-2
    Wang Guihua, Su Jilan, Chu Peter C. 2003. Mesoscale eddies in the South China Sea observed with altimeter data. Geophysical Research Letters, 30(21): 2121. doi: 10.1029/2003GL018532
    Xie Xiaohui, Liu Qian, Zhao Zhongxiang, et al. 2018. Deep sea currents driven by breaking internal tides on the continental slope. Geophysical Research Letters, 45(12): 6160–6166. doi: 10.1029/2018GL078372
    Xie Xiaohui, Shang Xiaodong, van Haren H, et al. 2013. Observations of enhanced nonlinear instability in the surface reflection of internal tides. Geophysical Research Letters, 40(8): 1580–1586. doi: 10.1002/grl.50322
    Xiu Peng, Chai Fei, Shi Lei, et al. 2010. A census of eddy activities in the South China Sea during 1993–2007. Journal of Geophysical Research: Oceans, 115(C3): C03012. doi: 10.1029/2009JC005657
    Xu Zhenhua, Liu Kun, Yin Baoshu, et al. 2016. Long-range propagation and associated variability of internal tides in the South China Sea. Journal of Geophysical Research: Oceans, 121(11): 8268–8286. doi: 10.1002/2016JC012105
    Xu Zhenhua, Wang Yang, Liu Zhiqiang, et al. 2021. Insight into the dynamics of the radiating internal tide associated with the Kuroshio Current. Journal of Geophysical Research: Oceans, 126(6): e2020JC017018. doi: 10.1029/2020JC017018
    Xu Zhenhua, Yin Baoshu, Hou Yijun, et al. 2013. Variability of internal tides and near-inertial waves on the continental slope of the northwestern South China Sea. Journal of Geophysical Research: Oceans, 118(1): 197–211. doi: 10.1029/2012JC008212
    Xu Zhenhua, Yin Baoshu, Hou Yijun, et al. 2014. Seasonal variability and north–south asymmetry of internal tides in the deep basin west of the Luzon Strait. Journal of Marine Systems, 134: 101–112. doi: 10.1016/j.jmarsys.2014.03.002
    Xue Huijie, Chai Fei, Pettigrew N, et al. 2004. Kuroshio intrusion and the circulation in the South China Sea. Journal of Geophysical Research: Oceans, 109(C2): C02017. doi: 10.1029/2002JC001724
    Zhai Rongwei, Chen Guiying, Liang Changrong, et al. 2020. The influence of ENSO on the structure of internal tides in the Xisha Area. Journal of Geophysical Research: Oceans, 125(3): e2019JC015405. doi: 10.1029/2019JC015405
    Zhao Zhongxiang. 2014. Internal tide radiation from the Luzon Strait. Journal of Geophysical Research: Oceans, 119(8): 5434–5448. doi: 10.1002/2014JC010014
    Zhao Zhongxiang, Alford M H, MacKinnon J A, et al. 2010. Long-range propagation of the semidiurnal internal tide from the Hawaiian Ridge. Journal of Physical Oceanography, 40(4): 713–736. doi: 10.1175/2009JPO4207.1
    Zu Tingting, Gan Jianping, Erofeeva S Y. 2008. Numerical study of the tide and tidal dynamics in the South China Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 55(2): 137–154. doi: 10.1016/j.dsr.2007.10.007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views (325) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return