Citation: | Xiangyu Song, Zemin Wang, Jianbin Song, Baojun Zhang, Mingliang Liu. The morphological changes of basal channels based on multi-source remote sensing data at the Pine Island Ice Shelf[J]. Acta Oceanologica Sinica, 2023, 42(12): 90-104. doi: 10.1007/s13131-023-2241-3 |
Alley K E, Scambos T A, Siegfried M R, et al. 2016. Impacts of warm water on Antarctic ice shelf stability through basal channel formation. Nature Geoscience, 9(4): 290–293. doi: 10.1038/Ngeo2675
|
Aoki S, Takahashi T, Yamazaki K, et al. 2022. Warm surface waters increase Antarctic ice shelf melt and delay dense water formation. Communications Earth & Environment, 3: 142. doi: 10.1038/s43247-022-00456-z
|
Bindschadler R, Vaughan D G, Vornberger P. 2011. Variability of basal melt beneath the Pine Island Glacier ice shelf, West Antarctica. Journal of Glaciology, 57(204): 581–595. doi: 10.3189/002214311797409802
|
Blanchard-Wrigglesworth E, Roach L A, Donohoe A, et al. 2021. Impact of winds and southern ocean SSTs on Antarctic sea ice trends and variability. Journal of Climate, 34(3): 949–965. doi: 10.1175/Jcli-D-20-0386.1
|
Borsa A A, Moholdt G, Fricker H A, et al. 2014. A range correction for ICESat and its potential impact on ice-sheet mass balance studies. The Cryosphere, 8(2): 345–357. doi: 10.5194/tc-8-345-2014
|
Borstad C P, Rignot E, Mouginot J, et al. 2013. Creep deformation and buttressing capacity of damaged ice shelves: theory and application to Larsen C ice shelf. The Cryosphere, 7(6): 1931–1947. doi: 10.5194/tc-7-1931-2013
|
Brabyn L, Stichbury G. 2020. Calculating the surface melt rate of Antarctic glaciers using satellite-derived temperatures and stream flows. Environmental Monitoring and Assessment, 192(7): 440. doi: 10.1007/s10661-020-08396-x
|
Breton D J, Baker I, Cole D M. 2016. Microstructural evolution of polycrystalline ice during confined creep testing. Cold Regions Science and Technology, 127: 25–36. doi: 10.1016/j.coldregions.2016.03.009
|
Brucker L, Markus T. 2013. Arctic-scale assessment of satellite passive microwave-derived snow depth on sea ice using Operation IceBridge airborne data. Journal of Geophysical Research: Oceans, 118(6): 2892–2905. doi: 10.1002/jgrc.20228
|
Cazenave A, Llovel W. 2010. Contemporary sea level rise. Annual Review of Marine Science, 2: 145–173. doi: 10.1146/annurev-marine-120308-081105
|
Chartrand A M, Howat I M. 2020. Basal channel evolution on the Getz Ice Shelf, West Antarctica. Journal of Geophysical Research: Earth Surface, 125(9): e2019JF005293. doi: 10.1029/2019JF005293
|
Christmann J, Plate C, Müller R, et al. 2016. Viscous and viscoelastic stress states at the calving front of Antarctic ice shelves. Annals of Glaciology, 57(73): 10–18. doi: 10.1017/aog.2016.18
|
Costi J, Arigony-Neto J, Braun M, et al. 2018. Estimating surface melt and runoff on the Antarctic Peninsula using ERA-Interim reanalysis data. Antarctic Science, 30(6): 379–393. doi: 10.1017/S0954102018000391
|
Derkani M H, Alberello A, Nelli F, et al. 2021. Wind, waves, and surface currents in the Southern Ocean: observations from the Antarctic Circumnavigation Expedition. Earth System Science Data, 13(3): 1189–1209. doi: 10.5194/essd-13-1189-2021
|
Dinniman M S, Klinck J M, Smith W O. 2011. A model study of Circumpolar Deep Water on the West Antarctic Peninsula and Ross Sea continental shelves. Deep-Sea Research Part II: Topical Studies in Oceanography, 58(13–16): 1508–1523,
|
Donat-Magnin M, Jourdain N C, Kittel C, et al. 2021. Future surface mass balance and surface melt in the Amundsen sector of the West Antarctic Ice Sheet. The Cryosphere, 15(2): 571–593. doi: 10.5194/tc-15-571-2021
|
Dong Yuting, Zhao Ji, Floricioiu D, et al. 2021. High-resolution topography of the Antarctic Peninsula combining the TanDEM-X DEM and Reference Elevation Model of Antarctica (REMA) mosaic. The Cryosphere, 15(9): 4421–4443. doi: 10.5194/tc-15-4421-2021
|
Dutrieux P, Stewart C, Jenkins A, et al. 2014. Basal terraces on melting ice shelves. Geophysical Research Letters, 41(15): 5506–5513. doi: 10.1002/2014gl060618
|
Dutrieux P, Vaughan D G, Corr H F J, et al. 2013. Pine Island glacier ice shelf melt distributed at kilometre scales. The Cryosphere, 7(5): 1543–1555. doi: 10.5194/tc-7-1543-2013
|
Fair Z, Flanner M, Brunt K M, et al. 2020. Using ICESat-2 and Operation IceBridge altimetry for supraglacial lake depth retrievals. The Cryosphere, 14(11): 4253–4263. doi: 10.5194/tc-14-4253-2020
|
Farrell S L, Kurtz N, Connor L N, et al. 2012. A first assessment of IceBridge snow and ice thickness data over Arctic Sea Ice. IEEE Transactions on Geoscience and Remote Sensing, 50(6): 2098–2111. doi: 10.1109/Tgrs.2011.2170843
|
Fretwell P, Pritchard H D, Vaughan D G, et al. 2013. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. The Cryosphere, 7(1): 375–393. doi: 10.5194/tc-7-375-2013
|
Fricker H A, Padman L. 2006. Ice shelf grounding zone structure from ICESat laser altimetry. Geophysical Research Letters, 33(15): L15502. doi: 10.1029/2006gl026907
|
Fürst J J, Durand G, Gillet-Chaulet F, et al. 2016. The safety band of Antarctic ice shelves. Nature Climate Change, 6(5): 479–482. doi: 10.1038/Nclimate2912
|
Gladish C V, Holland D M, Holland P R, et al. 2012. Ice-shelf basal channels in a coupled ice/ocean model. Journal of Glaciology, 58(212): 1227–1244. doi: 10.3189/2012JoG12J003
|
Greene C A, Blankenship D D, Gwyther D E, et al. 2017. Wind causes Totten Ice Shelf melt and acceleration. Science Advances, 3(11): e1701681. doi: 10.1126/sciadv.1701681
|
Haseloff M, Sergienko O V. 2018. The effect of buttressing on grounding line dynamics. Journal of Glaciology, 64(245): 417–431. doi: 10.1017/jog.2018.30
|
Hofstede C, Beyer S, Corr H, et al. 2021. Evidence for a grounding line fan at the onset of a basal channel under the ice shelf of Support Force Glacier, Antarctica, revealed by reflection seismics. The Cryosphere, 15(3): 1517–1535. doi: 10.5194/tc-15-1517-2021
|
Howat I M, Porter C, Smith B E, et al. 2019. The reference elevation model of Antarctica. The Cryosphere, 13(2): 665–674. doi: 10.5194/tc-13-665-2019
|
Jacobs S S, Jenkins A, Giulivi C F, et al. 2011. Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf. Nature Geoscience, 4(8): 519–523. doi: 10.1038/Ngeo1188
|
Jenkins A, Dutrieux P, Jacobs S S, et al. 2010. Observations beneath Pine Island Glacier in West Antarctica and implications for its retreat. Nature Geoscience, 3(7): 468–472. doi: 10.1038/Ngeo890
|
Johnson A, Hock R, Fahnestock M. 2022. Spatial variability and regional trends of Antarctic ice shelf surface melt duration over 1979–2020 derived from passive microwave data. Journal of Glaciology, 68(269): 533–546. doi: 10.1017/jog.2021.112
|
Joughin I, Smith B E, Holland D M. 2010. Sensitivity of 21st century sea level to ocean-induced thinning of Pine Island Glacier, Antarctica. Geophysical Research Letters, 37(20): L20502. doi: 10.1029/2010gl044819
|
Kurtz N T, Farrell S L. 2011. Large-scale surveys of snow depth on Arctic sea ice from Operation IceBridge. Geophysical Research Letters, 38(20): L20505. doi: 10.1029/2011gl049216
|
Lilien D A, Joughin I, Smith B, et al. 2019. Melt at grounding line controls observed and future retreat of Smith, Pope, and Kohler glaciers. The Cryosphere, 13(11): 2817–2834. doi: 10.5194/tc-13-2817-2019
|
Liu Yan, Moore J C, Cheng Xiao, et al. 2015. Ocean-driven thinning enhances iceberg calving and retreat of Antarctic ice shelves. Proceedings of the National Academy of Sciences of the United States of America, 112(11): 3263–3268. doi: 10.1073/pnas.1415137112
|
Mankoff K D, Jacobs S S, Tulaczyk S M, et al. 2012. The role of Pine Island Glacier ice shelf basal channels in deep-water upwelling, polynyas and ocean circulation in Pine Island Bay, Antarctica. Annals of Glaciology, 53(60): 123–128. doi: 10.3189/2012AoG60A062
|
Marsh O J, Fricker H A, Siegfried M R, et al. 2016. High basal melting forming a channel at the grounding line of Ross Ice Shelf, Antarctica. Geophysical Research Letters, 43(1): 250–255. doi: 10.1002/2015gl066612
|
Mayer C, Schaffer J, Hattermann T, et al. 2018. Large ice loss variability at Nioghalvfjerdsfjorden Glacier, Northeast-Greenland. Nature Communications, 9: 2768. doi: 10.1038/s41467-018-05180-x
|
Meierbachtol T, Harper J, Humphrey N. 2013. Basal drainage system response to increasing surface melt on the Greenland ice sheet. Science, 341(6147): 777–779. doi: 10.1126/science.1235905
|
Millgate T, Holland P R, Jenkins A, et al. 2013. The effect of basal channels on oceanic ice-shelf melting. Journal of Geophysical Research: Oceans, 118(12): 6951–6964. doi: 10.1002/2013jc009402
|
Mouginot J, Rignot E, Scheuchl B, et al. 2015. Fast retreat of Zachariae Isstrom, northeast Greenland. Science, 350(6266): 1357–1361. doi: 10.1126/science.aac7111
|
Nakayama Y, Timmermann R, Schröder M, et al. 2014. On the difficulty of modeling Circumpolar Deep Water intrusions onto the Amundsen Sea continental shelf. Ocean Modelling, 84: 26–34. doi: 10.1016/j.ocemod.2014.09.007
|
Noh M J, Howat I M. 2017. The surface extraction from TIN based search-space minimization (SETSM) algorithm. ISPRS Journal of Photogrammetry and Remote Sensing, 129: 55–76. doi: 10.1016/j.isprsjprs.2017.04.019
|
Oza S R. 2015. Spatial-temporal patterns of surface melting observed over Antarctic ice shelves using scatterometer data. Antarctic Science, 27(4): 403–410. doi: 10.1017/S0954102014000832
|
Pegler S S. 2018. Marine ice sheet dynamics: the impacts of ice-shelf buttressing. Journal of Fluid Mechanics, 857: 605–647. doi: 10.1017/jfm.2018.741
|
Pritchard H D, Ligtenberg S R M, Fricker H A, et al. 2012. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature, 484(7395): 502–505. doi: 10.1038/nature10968
|
Rignot E, Mouginot J. 2012. Ice flow in Greenland for the international polar year 2008–2009. Geophysical Research Letters, 39(11): L11501. doi: 10.1029/2012gl051634
|
Rignot E, Steffen K. 2008. Channelized bottom melting and stability of floating ice shelves. Geophysical Research Letters, 35(2): L02503. doi: 10.1029/2007gl031765
|
Sergienko O V. 2013. Basal channels on ice shelves. Journal of Geophysical Research: Earth Surface, 118(3): 1342–1355. doi: 10.1002/jgrf.20105
|
Song Min, Cole D M, Baker I. 2006a. Investigation of Newtonian creep in polycrystalline ice. Philosophical Magazine Letters, 86(12): 763–771. doi: 10.1080/09500830601023787
|
Song Min, Cole D M, Baker I. 2006b. An investigation of the effects of particles on creep of polycrystalline ice. Scripta Materialia, 55(1): 91–94. doi: 10.1016/j.scriptamat.2006.03.029
|
Stewart A L, Chi Xiaoyang, Solodoch A, et al. 2021. High-frequency fluctuations in Antarctic bottom water transport driven by southern ocean winds. Geophysical Research Letters, 48(17): e2021GL094569. doi: 10.1029/2021GL094569
|
Stewart C L, Christoffersen P, Nicholls K W, et al. 2019. Basal melting of Ross Ice Shelf from solar heat absorption in an ice-front polynya. Nature Geoscience, 12(6): 435–440. doi: 10.1038/s41561-019-0356-0
|
Sun Weiwei, Wang Ruisheng. 2018. Fully convolutional networks for semantic segmentation of very high resolution remotely sensed images combined with DSM. IEEE Geoscience and Remote Sensing Letters, 15(3): 474–478. doi: 10.1109/Lgrs.2018.2795531
|
Thoma M, Jenkins A, Holland D, et al. 2008. Modelling Circumpolar Deep Water intrusions on the Amundsen Sea continental shelf, Antarctica. Geophysical Research Letters, 35(18): L18602. doi: 10.1029/2008gl034939
|
Tschudi M A, Stroeve J C, Stewart J S. 2016. Relating the age of Arctic Sea Ice to its thickness, as measured during NASA’s ICESat and IceBridge campaigns. Remote Sensing, 8(6): 457. doi: 10.3390/rs8060457
|
Vaughan D G, Corr H F J, Bindschadler R A, et al. 2012. Subglacial melt channels and fracture in the floating part of Pine Island Glacier, Antarctica. Journal of Geophysical Research: Earth Surface, 117(F3): F03012. doi: 10.1029/2012jf002360
|
Wang Zemin, Song Xiangyu, Zhang Baojun, et al. 2020. Basal channel extraction and variation analysis of Nioghalvfjerdsfjorden ice shelf in Greenland. Remote Sensing, 12(9): 1474. doi: 10.3390/rs12091474
|
Washam P, Nicholls K W, Münchow A, et al. 2019. Summer surface melt thins Petermann Gletscher Ice Shelf by enhancing channelized basal melt. Journal of Glaciology, 65(252): 662–674. doi: 10.1017/jog.2019.43
|
Wearing M G, Hindmarsh R C A, Worster M G. 2015. Assessment of ice flow dynamics in the zone close to the calving front of Antarctic ice shelves. Journal of Glaciology, 61(230): 1194–1206. doi: 10.3189/2015JoG15J116
|
Xia Wentao, Xie Hongjie. 2018. Assessing three waveform retrackers on sea ice freeboard retrieval from Cryosat-2 using Operation IceBridge Airborne altimetry datasets. Remote Sensing of Environment, 204: 456–471. doi: 10.1016/j.rse.2017.10.010
|