Citation: | Hongbo Zhao, Liangmin Huang, Jing Zhang, Songyuan You, Qingmin Zeng, Xiande Liu. Development of SNP parentage assignment techniques in the yellowfin seabream Acanthopagrus latus[J]. Acta Oceanologica Sinica, 2024, 43(2): 151-155. doi: 10.1007/s13131-023-2221-7 |
Abadía-Cardoso A, Anderson E C, Pearse D E, et al. 2013. Large-scale parentage analysis reveals reproductive patterns and heritability of spawn timing in a hatchery population of steelhead ( Oncorhynchus mykiss). Molecular Ecology, 22(18): 4733–4746, doi: 10.1111/mec.12426
|
Anderson E C, Garza J C. 2006. The power of single-nucleotide polymorphisms for large-scale parentage inference. Genetics, 172(4): 2567–2582, doi: 10.1534/genetics.105.048074
|
Flanagan S P, Jones A G. 2019. The future of parentage analysis: From microsatellites to SNPs and beyond. Molecular Ecology, 28(3): 544–567, doi: 10.1111/mec.14988
|
García-Fernández C, Sánchez J A, Blanco G. 2018. SNP-haplotypes: An accurate approach for parentage and relatedness inference in gilthead sea bream ( Sparus aurata). Aquaculture, 495: 582–591, doi: 10.1016/j.aquaculture.2018.06.019
|
Gjedrem T, Robinson N, Rye M. 2012. The importance of selective breeding in aquaculture to meet future demands for animal protein: a review. Aquaculture, 350–353: 117–129, doi: 10.1016/j.aquaculture.2012.04.008
|
Harlizius B, Lopes M S, Duijvesteijn N, et al. 2011. A single nucleotide polymorphism set for paternal identification to reduce the costs of trait recording in commercial pig breeding. Journal of Animal Science, 89(6): 1661–1668, doi: 10.2527/jas.2010-3347
|
Hauser L, Baird M, Hilborn R, et al. 2011. An empirical comparison of SNPs and microsatellites for parentage and kinship assignment in a wild sockeye salmon ( Oncorhynchus nerka) population. Molecular Ecology Resources, 11(S1): 150–161, doi: 10.1111/j.1755-0998.2010.02961.x
|
Holman L E, De La Serrana D G, Onoufriou A, et al. 2017. A workflow used to design low density SNP panels for parentage assignment and traceability in aquaculture species and its validation in Atlantic salmon. Aquaculture, 476: 59–64, doi: 10.1016/j.aquaculture.2017.04.001
|
Houston R D, Bean T P, Macqueen D J, et al. 2020. Harnessing genomics to fast-track genetic improvement in aquaculture. Nature Reviews Genetics, 21(7): 389–409, doi: 10.1038/s41576-020-0227-y
|
Kalinowski S T, Taper M L, Marshall T C. 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology, 16(5): 1099–1106, doi: 10.1111/j.1365-294X.2007.03089.x
|
Li Heng, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14): 1754–1760, doi: 10.1093/bioinformatics/btp324
|
Liu Sixin, Palti Y, Gao Guangtu, et al. 2016. Development and validation of a SNP panel for parentage assignment in rainbow trout. Aquaculture, 452: 178–182, doi: 10.1016/j.aquaculture.2015.11.001
|
Marshall T C, Slate J, Kruuk L E B, et al. 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Molecular Ecology, 7(5): 639–655, doi: 10.1046/j.1365-294x.1998.00374.x
|
Slate J, Marshall T, Pemberton J. 2000. A retrospective assessment of the accuracy of the paternity inference program CERVUS. Molecular Ecology, 9(6): 801–808, doi: 10.1046/j.1365-294x.2000.00930.x
|
Steele C A, Anderson E C, Ackerman M W, et al. 2013. A validation of parentage-based tagging using hatchery steelhead in the Snake River basin. Canadian Journal of Fisheries and Aquatic Sciences, 70(7): 1046–1054, doi: 10.1139/cjfas-2012-0451
|
Tokarska M, Marshall T, Kowalczyk R, et al. 2009. Effectiveness of microsatellite and SNP markers for parentage and identity analysis in species with low genetic diversity: the case of European bison. Heredity, 103(4): 326–332, doi: 10.1038/hdy.2009.73
|
Vandeputte M, Haffray P. 2014. Parentage assignment with genomic markers: a major advance for understanding and exploiting genetic variation of quantitative traits in farmed aquatic animals. Frontiers in Genetics, 5: 432, doi: 10.3389/fgene.2014.00432
|
Walling C A, Pemberton J M, Hadfield J D, et al. 2010. Comparing parentage inference software: reanalysis of a red deer pedigree. Molecular Ecology, 19(9): 1914–1928, doi: 10.1111/j.1365-294X.2010.04604.x
|
Weinman L R, Solomon J W, Rubenstein D R. 2015. A comparison of single nucleotide polymorphism and microsatellite markers for analysis of parentage and kinship in a cooperatively breeding bird. Molecular Ecology Resources, 15(3): 502–511, doi: 10.1111/1755-0998.12330
|
Xu Jian, Feng Jingyan, Peng Wenzhu, et al. 2017. Development and evaluation of a high-throughput single nucleotide polymorphism multiplex assay for assigning pedigrees in common carp. Aquaculture Research, 48(4): 1866–1876, doi: 10.1111/are.13024
|
Yue Genhua, Xia Junhong. 2014. Practical considerations of molecular parentage analysis in fish. Journal of the World Aquaculture Society, 45(2): 89–103, doi: 10.1111/jwas.12107
|
Zhao Honggang, Li Chao, Hargrove J S, et al. 2018. SNP marker panels for parentage assignment and traceability in the Florida bass ( Micropterus floridanus). Aquaculture, 485: 30–38, doi: 10.1016/j.aquaculture.2017.11.014
|
Zheng Guobin, Zhao Hongbo, Huang Liangmin, et al. 2023. Discovery and verification of SNP in Acanthopagrus latus. Journal of Tropical Oceanography (in Chinese), 42(2): 78–86, doi: 10.11978/2022108
|
Zhu Kecheng, Song Ling, Liu Baosuo, et al. 2020. Establishment of parentage determination in yellowfin seabream ( Acanthopagrus latus). Journal of Fisheries of China (in Chinese), 44(3): 351–357, doi: 10.11964/jfc.20181011480
|