Citation: | Tianyu Zhang, Mohammed Shokr, Zhida Zhang, Fengming Hui, Xiao Cheng, Zhilun Zhang, Jiechen Zhao, Chunlei Mi. Parameterization, sensitivity, and uncertainty of 1-D thermodynamic thin-ice thickness retrieval[J]. Acta Oceanologica Sinica, 2024, 43(7): 93-111. doi: 10.1007/s13131-023-2210-x |
Adams S, Willmes S, Schröder D, et al. 2012. Daily thin-ice thickness maps from modis thermal infrared imagery. In: 2012 IEEE International Geoscience and Remote Sensing Symposium. Munich: IEEE, 3265–3268,doi: 10.1109/igarss.2012.6350607
|
Adams S, Willmes S, Schröder D, et al. 2013. Improvement and sensitivity analysis of thermal thin-ice thickness retrievals. IEEE Transactions on Geoscience and Remote Sensing, 51(6): 3306–3318, doi: 10.1109/TGRS.2012.2219539
|
Alduchov O A, Eskridge R E. 1996. Improved magnus form approximation of saturation vapor pressure. Journal of Applied Meteorology, 35(4): 601–609, doi: 10.1175/1520-0450(1996)035<0601:Imfaos>2.0.Co;2
|
Aulicino G, Sansiviero M, Paul S, et al. 2018. A new approach for monitoring the terra nova bay polynya through MODIS ice surface temperature imagery and its validation during 2010 and 2011 winter seasons. Remote Sensing, 10(3): 366, doi: 10.3390/rs10030366
|
Bareiss J, Görgen K. 2005. Spatial and temporal variability of sea ice in the Laptev Sea: Analyses and review of satellite passive-microwave data and model results, 1979 to 2002. Global and Planetary Change, 48(1–3): 28–54, doi: 10.1016/j.gloplacha.2004.12.004
|
Cox G F N, Weeks W F. 1974. Salinity variations in sea ice. Journal of Glaciology, 13(67): 109–120, doi: 10.3189/S0022143000023418
|
Cuffey K M, Paterson W S B. 2010. The Physics of Glaciers. Burlington: Academic Press, 400–401
|
Doronin Y P, Borisenkov E P, Greenberg P. 1970. Thermal interaction of the atmosphere and the hydrosphere in the Arctic. Jerusalem: Israel Program for Scientific Translations, 85
|
Drucker R, Martin S, Moritz R. 2003. Observations of ice thickness and frazil ice in the St. Lawrence Island polynya from satellite imagery, upward looking sonar, and salinity/temperature moorings. Journal of Geophysical Research: Oceans, 108(C5): 3149, doi: 10.1029/2001JC001213
|
Ebner L, Schröder D, Heinemann G. 2011. Impact of Laptev Sea flaw polynyas on the atmospheric boundary layer and ice production using idealized mesoscale simulations. Polar Research, 30: 7210, doi: 10.3402/polar.v30i0.7210
|
ECMWF. 2021. IFS documentation CY47R3: Part IV physical processes. In: ECMWF, ed. IFS Documentation CY47R3. Reading UK: ECMWF, 1–214, doi: 10.21957/eyrpir4vj
|
Efimova N A. 1961. On methods of calculating monthly values of net long wave radiation. Meteorology and Hydrology (in Russian), 10: 28–33
|
Fukamachi Y, Simizu D, Ohshima K I, et al. 2017. Sea-ice thickness in the coastal northeastern Chukchi Sea from moored ice-profiling sonar. Journal of Glaciology, 63(241): 888–898, doi: 10.1017/jog.2017.56
|
Garrett T J, Zhao C F. 2006. Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes. Nature, 440(7085): 787–789, doi: 10.1038/nature04636
|
Goff J A, Gratch S. 1945. Thermodynamic properties of moist air. Transactions of the American Society of Heating and Ventilating Engineers, 51: 125
|
Hall D K, Key J R, Casey K A, et al. 2004. Sea ice surface temperature product from MODIS. IEEE Transactions on Geoscience and Remote Sensing, 42(5): 1076–1087, doi: 10.1109/tgrs.2004.825587
|
Hall D, Riggs G. 2021. MODIS/Terra sea ice extent 5-min L2 swath 1km, version 61. Boulder: NASA, doi: 10.5067/MODIS/ MOD29.061
|
Huntemann M, Heygster G, Kaleschke L, et al. 2014. Empirical sea ice thickness retrieval during the freeze-up period from SMOS high incident angle observations. The Cryosphere, 8(2): 439–451, doi: 10.5194/tc-8-439-2014
|
Iwamoto K, Ohshima K I, Tamura T. 2014. Improved mapping of sea ice production in the Arctic Ocean using AMSR-E thin ice thickness algorithm. Journal of Geophysical Research: Oceans, 119(6): 3574–3594, doi: 10.1002/2013JC009749
|
Jin X, Barber D, Papakyriakou T. 2006. A new clear-sky downward longwave radiative flux parameterization for Arctic areas based on rawinsonde data. Journal of Geophysical Research: Atmospheres, 111(D24): D24104, doi: 10.1029/2005JD007039
|
Jin Z H, Stamnes K, Weeks W F, et al. 1994. The effect of sea ice on the solar energy budget in the atmosphere-sea ice-ocean system: A model study. Journal of Geophysical Research: Oceans, 99(C12): 25281–25294, doi: 10.1029/94JC02426
|
Kacimi S, Kwok R. 2020. The Antarctic sea ice cover from ICESat-2 and CryoSat-2: freeboard, snow depth, and ice thickness. The Cryosphere, 14(12): 4453–4474, doi: 10.5194/tc-14-4453-2020
|
Kaleschke L. 2013. SMOS Sea ice retrieval study (SMOSSIce): Final report. ESA ESTEC Contract No: 4000101476/10/NL/C, doi: 10.5281/zenodo.3406130. https://explore.openaire.eu/search/publication?pid=10.5281%2Fzenodo.3406130[2013-12-19/2022-05-06]
|
Karvonen J, Cheng B, Vihma T, et al. 2012. A method for sea ice thickness and concentration analysis based on SAR data and a thermodynamic model. The Cryosphere, 6(6): 1507–1526, doi: 10.5194/tc-6-1507-2012
|
Karvonen J, Shi L J, Cheng B, et al. 2017. Bohai sea ice parameter estimation based on thermodynamic ice model and earth observation data. Remote Sensing, 9(3): 234, doi: 10.3390/rs9030234
|
Kashiwase H, Ohshima K I, Nakata K, et al. 2021. Improved SSM/I thin ice algorithm with ice type discrimination in coastal polynyas. Journal of Atmospheric and Oceanic Technology, 38(4): 823–835, doi: 10.1175/JTECH-D-20-0145.1
|
Kern S, Gade M, Haas C, et al. 2006. Retrieval of thin-ice thickness using the L-band polarization ratio measured by the helicopter-borne scatterometer Heliscat. Annals of Glaciology, 44: 275–280., doi: 10.3189/172756406781811880
|
König-Langlo G, Augstein E. 1994. Parameterization of the downward long-wave radiation at the Earth’s surface in polar regions. Meteorologische Zeitschrift, 3(6): 343–347, doi: 10.1127/METZ/3/1994/343
|
Koo Y H, Lei R B, Cheng Y B, et al. 2021a. Estimation of thermodynamic and dynamic contributions to sea ice growth in the Central Arctic using ICESat-2 and MOSAiC SIMBA buoy data. Remote Sensing of Environment, 267: 112730, doi: 10.1016/j.rse.2021.112730
|
Koo Y H, Xie H J, Kurtz N T, et al. 2021b. Weekly mapping of sea ice freeboard in the ross sea from ICESat-2. Remote Sensing, 13(16): 3277, doi: 10.3390/rs13163277
|
Kurtz N, Studinger M, Harbeck J, et al. 2015. IceBridge L4 sea ice freeboard, snow depth, and thickness, Version 1. Boulder: NASA, doi: 10.5067/G519SHCKWQV6
|
Kwok R, Kacimi S, Markus T, et al. 2019. ICESat-2 surface height and sea ice freeboard assessed with ATM lidar acquisitions from operation IceBridge. Geophysical Research Letters, 46(20): 11228–11236, doi: 10.1029/2019GL084976
|
Kwok R, Kacimi S, Webster M A, et al. 2020. Arctic snow depth and sea ice thickness from ICESat-2 and CryoSat-2 freeboards: a first examination. Journal of Geophysical Research: Oceans, 125(3): e2019JC016008, doi: 10.1029/2019jc016008
|
Kwok R, Rothrock D A. 2009. Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008. Geophysical Research Letters, 36(15): L15501, doi: 10.1029/2009gl039035
|
Launiainen J, Vihma T. 1990. Derivation of turbulent surface fluxes—An iterative flux-profile method allowing arbitrary observing heights. Environmental Software, 5(3): 113–124, doi: 10.1016/0266-9838(90)90021-W
|
Ledley T S. 1991. Snow on sea ice: Competing effects in shaping climate. Journal of Geophysical Research: Atmospheres, 96(D9): 17195–17208, doi: 10.1029/91JD01439
|
Mäkynen M, Cheng B, Similä M. 2013. On the accuracy of thin-ice thickness retrieval using MODIS thermal imagery over Arctic first-year ice. Annals of Glaciology, 54(62): 87–96, doi: 10.3189/2013AoG62A166
|
Mäkynen M, Similä M. 2019. Thin ice detection in the barents and kara seas using AMSR2 high-frequency radiometer data. IEEE Transactions on Geoscience and Remote Sensing, 57(10): 7418–7437, doi: 10.1109/tgrs.2019.2913283
|
Martin S, Drucker R, Kwok R, et al. 2004. Estimation of the thin ice thickness and heat flux for the Chukchi Sea Alaskan coast polynya from Special Sensor Microwave/Imager data, 1990–2001. Journal of Geophysical Research: Oceans, 109(C10): C10012, doi: 10.1029/2004jc002428
|
Maykut G A. 1978. Energy exchange over young sea ice in the central Arctic. Journal of Geophysical Research: Oceans, 83(C7): 3646–3658, doi: 10.1029/JC083iC07p03646
|
Maykut G A. 1982. Large-scale heat exchange and ice production in the central Arctic. Journal of Geophysical Research: Oceans, 87(C10): 7971–7984, doi: 10.1029/JC087iC10p07971
|
McHedlishvili A, Spreen G, Melsheimer C, et al. 2022. Weddell Sea polynya analysis using SMOS-SMAP apparent sea ice thickness retrieval. The Cryosphere, 16(2): 471–487, doi: 10.5194/tc-16-471-2022
|
Melling H, Riedel D A. 2008. Ice draft and ice velocity data in the beaufort sea, 1990–2003, Version 1. Boulder: NSIDC,doi: 10.7265/N58913S6
|
Morison J H, Aagaard K, Moritz R, et al. 2009. North pole environmental observatory (NPEO) oceanographic mooring data, Version 1.0,doi: 10.5065/D6P84921
|
Murray J E, Brindley H E, Fox S, et al. 2020. Retrievals of high-latitude surface emissivity across the infrared from high-altitude aircraft flights. Journal of Geophysical Research: Atmospheres, 125(22): e2020JD033672, doi: 10.1029/2020JD033672
|
Nakata K, Ohshima K I, Nihashi S. 2019. Estimation of thin-ice thickness and discrimination of ice type from AMSR-E passive microwave data. IEEE Transactions on Geoscience and Remote Sensing, 57(1): 263–276, doi: 10.1109/tgrs.2018.2853590
|
Nazintsev Y L. 1964. Thermal balance of the surface of the perennial ice cover in the central Arctic. TrudyArkt Antarkt Nauch-Issled Inst (in Russian), 267: 110–126
|
Nihashi S, Kurtz N T, Markus T, et al. 2018. Estimation of sea-ice thickness and volume in the Sea of Okhotsk based on ICESat data. Annals of Glaciology, 59(76pt2): 101–111, doi: 10.1017/aog.2018.8
|
Nihashi S, Ohshima K I. 2001. Relationship between ice decay and solar heating through open water in the Antarctic sea ice zone. Journal of Geophysical Research: Oceans, 106(C8): 16767–16782, doi: 10.1029/2000JC000399
|
Ohshima K I, Tamaru N, Kashiwase H, et al. 2020. Estimation of sea ice production in the bering sea from AMSR-E and AMSR2 data, with special emphasis on the anadyr polynya. Journal of Geophysical Research: Oceans, 125(7): e2019JC016023, doi: 10.1029/2019jc016023
|
Paţilea C, Heygster G, Huntemann M, et al. 2019. Combined SMAP-SMOS thin sea ice thickness retrieval. The Cryosphere, 13(2): 675–691, doi: 10.5194/tc-13-675-2019
|
Paul S, Huntemann M. 2021. Improved machine-learning-based open-water–sea-ice-cloud discrimination over wintertime Antarctic sea ice using MODIS thermal-infrared imagery. The Cryosphere, 15(3): 1551–1565, doi: 10.5194/tc-15-1551-2021
|
Paul S, Willmes S, Gutjahr O, et al. 2015a. Spatial feature reconstruction of cloud-covered areas in daily MODIS composites. Remote Sensing, 7(5): 5042–5056, doi: 10.3390/rs70505042
|
Paul S, Willmes S, Heinemann G. 2015b. Long-term coastal-polynya dynamics in the southern Weddell Sea from MODIS thermal-infrared imagery. The Cryosphere, 9(6): 2027–2041, doi: 10.5194/tc-9-2027-2015
|
Preußer A, Heinemann G, Willmes S, et al. 2016. Circumpolar polynya regions and ice production in the Arctic: results from MODIS thermal infrared imagery from 2002/2003 to 2014/2015 with a regional focus on the Laptev Sea. The Cryosphere, 10(6): 3021–3042, doi: 10.5194/tc-10-3021-2016
|
Preußer A, Ohshima K I, Iwamoto K, et al. 2019. Retrieval of wintertime sea ice production in arctic polynyas using thermal infrared and passive microwave remote sensing data. Journal of Geophysical Research: Oceans, 124(8): 5503–5528, doi: 10.1029/2019jc014976
|
Renfrew I A, Barrell C, Elvidge A D, et al. 2021. An evaluation of surface meteorology and fluxes over the Iceland and Greenland Seas in ERA5 reanalysis: The impact of sea ice distribution. Quarterly Journal of the Royal Meteorological Society, 147(734): 691–712, doi: 10.1002/qj.3941
|
Rothrock D A, Percival D B, Wensnahan M. 2008. The decline in arctic sea-ice thickness: Separating the spatial, annual, and interannual variability in a quarter century of submarine data. Journal of Geophysical Research: Oceans, 113(C5): C05003, doi: 10.1029/2007JC004252
|
Sakatume S, Seki N. 1978. On the thermal properties of ice and snow in a low temperature region. Transactions of the Japan Society of Mechanical Engineers, 44(382): 2059–2069, doi: 10.1299/kikai1938.44.2059
|
Shokr M, Lambe A, Agnew T. 2008. A new algorithm (ECICE) to estimate ice concentration from remote sensing observations: an application to 85-GHz passive microwave data. IEEE Transactions on Geoscience and Remote Sensing, 46(12): 4104–4121, doi: 10.1109/TGRS.2008.2000624
|
Similä M, Mäkynen M, Cheng B, et al. 2013. Multisensor data and thermodynamic sea-ice model based sea-ice thickness chart with application to the Kara Sea, Arctic Russia. Annals of Glaciology, 54(62): 241–252, doi: 10.3189/2013AoG62A163
|
Stroeve J C, Serreze M C, Holland M M, et al. 2012. The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Climatic Change, 110(3/4): 1005–1027, doi: 10.1007/s10584-011-0101-1
|
Sturm M, Massom R A. 2009. Snow and sea ice. In: Thomas D N, Dieckmann G S, eds. Sea Ice. 2nd ed. Chichester, UK: Wiley-Blackwell, 153–204, doi: 10.1002/9781444317145.ch5
|
Sturm M, Perovich D K, Holmgren J. 2002. Thermal conductivity and heat transfer through the snow on the ice of the Beaufort Sea. Journal of Geophysical Research: Oceans, 107(C10): 8043, doi: 10.1029/2000jc000409
|
Tamura T, Ohshima K I. 2011. Mapping of sea ice production in the Arctic coastal polynyas. Journal of Geophysical Research: Oceans, 116(C7): C07030, doi: 10.1029/2010JC006586
|
Tamura T, Ohshima K I, Enomoto H, et al. 2006. Estimation of thin sea-ice thickness from NOAA AVHRR data in a polynya off the Wilkes Land coast, East Antarctica. Annals of Glaciology, 44: 269–274
|
Toyota T, Ono S, Cho K, et al. 2011. Retrieval of sea-ice thickness distribution in the Sea of Okhotsk from ALOS/PALSAR backscatter data. Annals of Glaciology, 52(57): 177–184, doi: 10.3189/172756411795931732
|
Tian-Kunze X, Kaleschke L, Maaß N, et al. 2014. SMOS-derived thin sea ice thickness: algorithm baseline, product specifications and initial verification. The Cryosphere, 8(3): 997–1018, doi: 10.5194/tc-8-997-2014
|
Untersteiner N. 1964. Calculations of temperature regime and heat budget of sea ice in the central Arctic. Journal of Geophysical Research, 69(22): 4755–4766, doi: 10.1029/JZ069i022p04755
|
von Albedyll L, Haas C, Dierking W. 2021. Linking sea ice deformation to ice thickness redistribution using high-resolution satellite and airborne observations. The Cryosphere, 15(5): 2167–2186, doi: 10.5194/tc-15-2167-2021
|
Wang Xuanji, Key J R, Liu Yinghui. 2010. A thermodynamic model for estimating sea and lake ice thickness with optical satellite data. Journal of Geophysical Research: Oceans, 115(C12): C12035, doi: 10.1029/2009JC005857
|
Willmes S, Krumpen T, Adams S, et al. 2010. Cross-validation of polynya monitoring methods from multisensor satellite and airborne data: a case study for the Laptev Sea. Canadian Journal of Remote Sensing, 36(Sup1): S196–S210, doi: 10.5589/m10-012
|
Yu Y, Lindsay R W. 2003. Comparison of thin ice thickness distributions derived from RADARSAT Geophysical Processor System and advanced very high resolution radiometer data sets. Journal of Geophysical Research: Oceans, 108(C12): 3387, doi: 10.1029/2002jc001319
|
Yu Y, Rothrock D A. 1996. Thin ice thickness from satellite thermal imagery. Journal of Geophysical Research: Oceans, 101(C11): 25753–25766, doi: 10.1029/96jc02242
|
Yu Yining, Xiao Wanxin, Zhang Zhilun, et al. 2021. Evaluation of 2-m air temperature and surface temperature from ERA5 and ERA-I using buoy observations in the arctic during 2010–2020. Remote Sensing, 13(14): 2813, doi: 10.3390/rs13142813
|
Zeng Tao, Shi Lijian, Marko M, et al. 2016. Sea ice thickness analyses for the Bohai Sea using MODIS thermal infrared imagery. Acta Oceanologica Sinica, 35(7): 96–104, doi: 10.1007/s13131-016-0908-8
|
Zine S, Boutin J, Font J, et al. 2008. Overview of the SMOS sea surface salinity prototype processor. IEEE Transactions on Geoscience and Remote Sensing, 46(3): 621–645, doi: 10.1109/tgrs.2008.915543
|