Citation: | Kaituo Qi, Hongsheng Zhang, Jiaojiao Lu, Yinggang Zheng, Zhouhao Zhang. Strip segmentation of oceanic internal waves in SAR images based on TransUNet[J]. Acta Oceanologica Sinica, 2023, 42(10): 67-74. doi: 10.1007/s13131-023-2206-6 |
Alpers W. 1985. Theory of radar imaging of internal waves. Nature, 314(6008): 245–247. doi: 10.1038/314245a0
|
Bao Sude, Meng Junmin, Sun Lina, et al. 2020. Detection of ocean internal waves based on faster R-CNN in SAR images. Journal of Oceanology and Limnology, 38(1): 55–63. doi: 10.1007/S00343-019-9028-6
|
Chen Jieneng, Lu Yongyi, Yu Qihang, et al. 2021. TransUNet: transformers make strong encoders for medical image segmentation. Preprint arXiv, https://arxiv.org/abs/2102.04306v1[2021-02-08/2022-07-29
|
Dosovitskiy A, Beyer L, Kolesnikov A, et al. 2021. An image is worth 16×16 words: transformers for image recognition at scale. Preprint arXiv, https://arxiv.org/abs/2010.11929v2[2021-06-03/2022-07-29
|
Krizhevsky A, Sutskever I, Hinton G E. 2017. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6): 84–90. doi: 10.1145/3065386
|
Lavrova O Y, Mityagina M I, Serebryany A N, et al. 2014. Internal waves in the Black Sea: satellite observations and in-situ measurements. In: Proceedings of SPIE 9240, Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2014. Amsterdam, Netherlands: SPIE
|
Li Xiaofeng, Liu Bin, Zheng Gang, et al. 2020. Deep-learning-based information mining from ocean remote-sensing imagery. National Science Review, 7(10): 1584–1605. doi: 10.1093/NSR/NWAA047
|
Ronneberger O, Fischer P, Brox T. 2015. U-Net: convolutional networks for biomedical image segmentation. In: Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich, Germany: Springer, 234–241
|
Russell B C, Torralba A, Murphy K P, et al. 2008. LabelMe: a database and web-based tool for image annotation. International Journal of Computer Vision, 77(1–3): 157–173. doi: 10.1007/s11263-007-0090-8
|
Shelhamer E, Long J, Darrell T. 2017. Fully convolutional networks for semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(4): 640–651. doi: 10.1109/TPAMI.2016.2572683
|
Simonyan K, Zisserman A. 2015. Very deep convolutional networks for large-scale image recognition. Preprint arXiv, https://arxiv.org/abs/1409.1556v6[2015-04-10/2022-07-29
|
Srivastava N, Hinton G, Krizhevsky A, et al. 2014. Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(1): 1929–1958
|
Vaswani A, Shazeer N, Parmar N, et al. 2017. Attention is all you need. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA: Curran Associates Inc.
|
Wang Shengke, Dong Qinghong, Duan Lianghua, et al. 2019. A fast internal wave detection method based on PCANet for ocean monitoring. Journal of Intelligent Systems, 28(1): 103–113. doi: 10.1515/JISYS-2017-0033
|
Zaremba W, Ilya S, Oriol V. 2014. Recurrent neural network regularization. Preprint arXiv, http://arXiv.org/abs/1409.2329v5[2015-02-19/2022-07-29
|
Zhang Hao, Meng Junmin, Sun Lina, et al. 2020. Performance analysis of internal solitary wave detection and identification based on compact polarimetric SAR. IEEE Access, 8: 172839–172847. doi: 10.1109/ACCESS.2020.3025946
|
Zheng Yinggang, Zhang Hongsheng, Qi Kaituo, et al. 2022. Stripe segmentation of oceanic internal waves in SAR images based on SegNet. Geocarto International, 37(25): 8567–8578. doi: 10.1080/10106049.2021.2002430
|
Zheng Yinggang, Zhang Hongsheng, Wang Youqiang. 2021. Stripe detection and recognition of oceanic internal waves from synthetic aperture radar based on support vector machine and feature fusion. International Journal of Remote Sensing, 42(17): 6706–6724. doi: 10.1080/01431161.2021.1943040
|