Citation: | Lijun Song, Wen Liu, Shibin Zhao, Chunqian Li, Jinjia Guo, Natasha Dimova, Bochao Xu. Measuring 222Rn in aquatic environment via Pulsed Ionization Chamber Radon Detector[J]. Acta Oceanologica Sinica, 2023, 42(8): 185-189. doi: 10.1007/s13131-023-2183-9 |
Baskaran M. 2016. Radon: A Tracer for Geological, Geophysical and Geochemical Studies. Cham: Springer, 1–254
|
Broecker W S, Li Yuanhui, Cromwell J. 1967. Radium-226 and radon-222: concentration in Atlantic and Pacific Oceans. Science, 158(3806): 1307–1310. doi: 10.1126/science.158.3806.1307
|
Burnett W C, Kim G, Lane-Smith D. 2001. A continuous monitor for assessment of 222Rn in the coastal ocean. Journal of Radioanalytical and Nuclear Chemistry, 249(1): 167–172. doi: 10.1023/A:1013217821419
|
Cable J E, Burnett W C, Chanton J P, et al. 1996. Estimating groundwater discharge into the northeastern Gulf of Mexico using radon-222. Earth and Planetary Science Letters, 144(3–4): 591–604
|
Cantaluppi C, Zannoni D, Cianchi A, et al. 2021. Methods for radioactivity measurements in drinking water using gamma spectrometry. Journal of Environmental Radioactivity, 232: 106566. doi: 10.1016/j.jenvrad.2021.106566
|
Cook P G, Favreau G, Dighton J C, et al. 2003. Determining natural groundwater influx to a tropical river using radon, chlorofluorocarbons and ionic environmental tracers. Journal of Hydrology, 277(1–2): 74–88
|
D’Alessandro W, Vita F. 2003. Groundwater radon measurements in the Mt. Etna area. Journal of Environmental Radioactivity, 65(2): 187–201. doi: 10.1016/S0265-931X(02)00096-6
|
Gavrilyuk Y M, Gangapshev A M, Gezhaev A M, et al. 2015. High-resolution ion pulse ionization chamber with air filling for the 222Rn decays detection. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 801: 27–33
|
Guo Xiaoyi, Xu Bochao, Burnett W C, et al. 2020. Does submarine groundwater discharge contribute to summer hypoxia in the Changjiang (Yangtze) River Estuary?. Science of The Total Environment, 719: 137450
|
Jacob N, Babu D S D, Shivanna K. 2009. Radon as an indicator of submarine groundwater discharge in coastal regions. Current Science, 97(9): 1313–1320
|
Kelleher K, Wong J, León-Vintró L, et al. 2017. International Rn-222 in drinking water interlaboratory comparison. Applied Radiation and Isotopes, 126: 270–272. doi: 10.1016/j.apradiso.2017.01.036
|
Key R M, Guinasso N L Jr, Schink D R. 1979. Emanation of radon-222 from marine sediments. Marine Chemistry, 7(3): 221–250. doi: 10.1016/0304-4203(79)90041-0
|
Kim G, Burnett W C, Dulaiova H, et al. 2001. Measurement of224Ra and 226Ra activities in natural waters using a radon-in-air monitor. Environmental Science & Technology, 35(23): 4680–4683
|
Lambert M J, Burnett W C. 2003. Submarine groundwater discharge estimates at a Florida coastal site based on continuous radon measurements. Biogeochemistry, 66(1–2): 55–73
|
Lee J M, Kim G. 2006. A simple and rapid method for analyzing radon in coastal and ground waters using a radon-in-air monitor. Journal of Environmental Radioactivity, 89(3): 219–228. doi: 10.1016/j.jenvrad.2006.05.006
|
Li Chunqian, Zhao Shibin, Zhang Chenglun, et al. 2022. Further refinements of a continuous radon monitor for surface ocean water measurements. Frontiers in Marine Science, 9:1047126
|
Moore W S. 1976. Sampling 228Ra in the deep ocean. Deep-Sea Research and Oceanographic Abstracts, 1976, 23(7): 647–651
|
Savatier M, Rocha C. 2021. Rethinking tracer-based (Ra, Rn, salinity) approaches to estimate point-source submarine groundwater discharge (SGD) into coastal systems. Journal of Hydrology, 598: 126247. doi: 10.1016/j.jhydrol.2021.126247
|
Schmidt A, Schlueter M, Melles M, et al. 2008. Continuous and discrete on-site detection of radon-222 in ground- and surface waters by means of an extraction module. Applied Radiation and Isotopes, 66(12): 1939–1944. doi: 10.1016/j.apradiso.2008.05.005
|
Seo J, Kim G. 2021. Rapid and precise measurements of radon in water using a pulsed ionization chamber. Limnology and Oceanography: Methods, 19(4): 245–252. doi: 10.1002/lom3.10419
|
Singaraja C, Chidambaram S, Jacob N, et al. 2016. Radon levels in groundwater in the Tuticorin district of Tamil Nadu, South India. Journal of Radioanalytical and Nuclear Chemistry, 307(2): 1165–1173. doi: 10.1007/s10967-015-4312-1
|
Wang Xiaoxiong, Chen Xiaogang, Liu Jianan, et al. 2021. Radon traced seasonal variations of water mixing and accompanying nutrient and carbon transport in the Yellow-Bohai Sea. Science of The Total Environment, 784: 147161. doi: 10.1016/j.scitotenv.2021.147161
|
Yu Zhongbo, Li Minjuan, Liu Yunchen, et al. 2020. Study on hydraulic exchange of river water and groundwater based on radon isotope. Journal of Hohai University: Natural Sciences (in Chinese), 48(1): 8–13
|
Zhang Xiaojie, Xu Bochao, Xia Dong, et al. 2016. Using natural radium and radon isotopes trace the water transport process and nutrients distribution in the Yellow River Estuary under the influence of the Water-Sediment Regulation Scheme. Haiyang Xuebao (in Chinese), 38(8): 36–43
|
Zhang Xiaojie, Xu Xiaohan, Xiang Zhanchang, et al. 2018. Distribution characteristics and influence factors of radium and radon isotopes in the lower reaches of the Yellow River. Marine Environmental Science (in Chinese), 37(1): 1–7
|
Zhao Chongde. 1993. Determination of 222Rn in the water. Atomic Energy Science and Technology (in Chinese), (1): 62–65
|