Citation: | Xuyang Wei, Xin Liu, Zhen Li, Xiaotao Chang, Hongxin Luo, Chengcheng Zhu, Jinyun Guo. Gravity anomalies determined from mean sea surface model data over the Gulf of Mexico[J]. Acta Oceanologica Sinica, 2023, 42(12): 39-50. doi: 10.1007/s13131-023-2178-6 |
Andersen O B, Abulaitijiang A, Zhang Shengjun, et al. 2021. A new high resolution mean sea surface (DTU21MSS) for improved sea level monitoring. In: Proceedings of EGU General Assembly 2021. Vienna: EGU,
|
Andersen O B, Knudsen P, Berry P A M. 2010. The DNSC08GRA global marine gravity field from double retracked satellite altimetry. Journal of Geodesy, 84(3): 191–199. doi: 10.1007/s00190-009-0355-9
|
Andersen O B, Vest A L, Knudsen P. 2005. The KMS04 multi-mission mean sea surface. In: Proceedings of Workshop: GOCINA: Improving Modelling of Ocean Transport and Climate Prediction in the North Atlantic Region Using GOCE Gravimetry. Novotel, Luxembourg: Centre European de Geodynamique et de Seimologie
|
Chelton D B, Walsh E J, MacArthur J L. 1989. Pulse compression and sea level tracking in satellite altimetry. Journal of Atmospheric and Oceanic Technology, 6(3): 407–438. doi: 10.1175/1520-0426(1989)006<0407:PCASLT>2.0.CO;2
|
Fairhead J D, Green C M, Odegard M E. 2001. Satellite-derived gravity having an impact on marine exploration. The Leading Edge, 20(8): 873–876. doi: 10.1190/1.1487298
|
Fu L L, Cazenave A. 2001. Satellite Altimetry and Earth Sciences: A Handbook of Techniques and Applications. San Diego: Academic Press
|
Gopalapillai S. 1974. Non-global recovery of gravity anomalies from a combination of terrestrial and satellite altimetry data. Columbus: Ohio State University
|
Gozzard S, Kusznir N, Franke D, et al. 2019. South China Sea crustal thickness and oceanic lithosphere distribution from satellite gravity inversion. Petroleum Geoscience, 25(1): 112–128. doi: 10.1144/petgeo2016-162
|
Guo Jinyun, Chang Xiaotao, Hwang C, et al. 2010. Oceanic surface geostrophic velocities determined with satellite altimetric crossover method. Chinese Journal of Geophysics, 53(6): 926–934. doi: 10.1002/cjg2.1563
|
Guo Jinyun, Luo Hongxin, Zhu Chengcheng, et al. 2022. Accuracy comparison of marine gravity derived from HY-2A/GM and CryoSat-2 altimetry data: a case study in the Gulf of Mexico. Geophysical Journal International, 230(2): 1267–1279. doi: 10.1093/gji/ggac114
|
Hwang C. 1998. Inverse Vening Meinesz formula and deflection-geoid formula: applications to the predictions of gravity and geoid over the South China Sea. Journal of Geodesy, 72(5): 304–312. doi: 10.1007/s001900050169
|
Hwang C, Chang E T Y. 2014. Seafloor secrets revealed. Science, 346: 32–33. doi: 10.1126/science.1260459
|
Hwang C, Parsons B. 1995. Gravity anomalies derived from Seasat, Geosat, ERS-1 and TOPEX/POSEIDON altimetry and ship gravity: a case study over the Reykjanes Ridge. Geophysical Journal International, 122(2): 551–568. doi: 10.1111/j.1365-246X.1995.tb07013.x
|
Ismael M. 2014. Tectonostratigraphic stages in the Mesozoic opening and subsidence of the Gulf of Mexico based on deep-penetration seismic reflection data in the salt-free eastern part of the basin [dissertation]. Houston: University of Houston
|
Jin Taoyong, Li Jiancheng. 2012. Calibration of the linear drift of mean sea level change from satellite altimetry using tide gauge observations. Geomatics and Information Science of Wuhan University (in Chinese), 37(10): 1194–1197. doi: 10.13203/j.whugis2012.10.020
|
Li Zhen, Guo Jinyun, Ji Bing, et al. 2022a. A review of marine gravity field recovery from satellite altimetry. Remote Sensing, 14(19): 4790. doi: 10.3390/rs14194790
|
Li Yang, Guo Jinyun, Sun Yu, et al. 2022b. Inversion of global sea level change and its component contributions by combining time-varying gravity data and altimetry data. Acta Geodaetica et Cartographica Sinica, 51(8): 1768–1778. doi: 10.11947/j.AGCS.2022.20210169
|
Liu Liang, Jiang Xiaoguang, Liu Shanwei, et al. 2016. Calculating the marine gravity anomaly of the South China Sea based on the inverse stokes formula. IOP Conference Series: Earth and Environmental Science, 46: 012062. doi: 10.1088/1755-1315/46/1/012062
|
Mulet S, Rio M H, Etienne H, et al. 2021. The new CNES-CLS18 global mean dynamic topography. Ocean Science, 17(3): 789–808. doi: 10.5194/os-17-789-2021
|
Pujol M I, Schaeffer P, Faugère Y, et al. 2018. Gauging the improvement of recent mean sea surface models: a new approach for identifying and quantifying their errors. Journal of Geophysical Research: Oceans, 123(8): 5889–5911. doi: 10.1029/2017JC013503
|
Rapp R H. 1979. Geos 3 data processing for the recovery of geoid undulations and gravity anomalies. Journal of Geophysical Research: Solid Earth, 84(B8): 3784–3792. doi: 10.1029/JB084iB08p03784
|
Sandwell D, Garcia E, Soofi K, et al. 2013. Toward 1-mGal accuracy in global marine gravity from CryoSat-2, Envisat, and Jason-1. The Leading Edge, 32(8): 892–899. doi: 10.1190/tle32080892.1
|
Sandwell D T, Müller R D, Smith W H F, et al. 2014. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 346(6205): 65–67. doi: 10.1126/science.1258213
|
Sandwell D T, Smith W H F. 1997. Marine gravity anomaly from Geosat and ERS 1 satellite altimetry. Journal of Geophysical Research: Solid Earth, 102(B5): 10039–10054. doi: 10.1029/96jb03223
|
Smith G N. 1974. Mean gravity anomaly prediction from terrestrial gravity data and satellite altimetry data [dissertation]. Columbus: The Ohio State University Columbus
|
Stanev E V, Peneva E L. 2001. Regional sea level response to global climatic change: Black Sea examples. Global and Planetary Change, 32(1): 33–47. doi: 10.1016/S0921-8181(01)00148-5
|
Wan Xiaoyun, Yu Jinhai. 2013. Mean dynamic topography calculated by GOCE gravity field model and CNES-CLS2010 mean sea surface height. Chinese Journal of Geophysics (in Chinese), 56(6): 1850–1856. doi: 10.6038/cjg20130607
|
Yang Junjun, Jekeli C, Liu Lintao. 2018. Seafloor topography estimation from gravity gradients using simulated annealing. Journal of Geophysical Research: Solid Earth, 123(8): 6958–6975. doi: 10.1029/2018jb015883
|
Yuan Jiajia, Guo Jinyun, Zhu Chengcheng, et al. 2021. High-resolution sea level change around China seas revealed through multi-satellite altimeter data. International Journal of Applied Earth Observation and Geoinformation, 102: 102433. doi: 10.1016/j.jag.2021.102433
|
Yuan Jiajia, Guo Jinyun, Zhu Chengcheng, et al. 2023. SDUST2020 MSS: A global 1′ × 1′ mean sea surface model determined from multi-satellite altimetry data. Earth System Science Data, 15(1): 155–169. doi: 10.5194/essd-15-155-2023
|
Zaron E D. 2019. Simultaneous estimation of ocean tides and underwater topography in the Weddell Sea. Journal of Geophysical Research: Oceans, 124(5): 3125–3148. doi: 10.1029/2019JC015037
|
Zhu Chengcheng, Guo Jinyun, Hwang C, et al. 2019. How HY-2A/GM altimeter performs in marine gravity derivation: assessment in the South China Sea. Geophysical Journal International, 219(2): 1056–1064. doi: 10.1093/gji/ggz330
|
Zhu Chengcheng, Guo Jinyun, Yuan Jiajia, et al. 2021. Refining altimeter-derived gravity anomaly model from shipborne gravity by multi-layer perceptron neural network: a case in the South China Sea. Remote Sensing, 13(4): 607. doi: 10.3390/rs13040607
|
Zhu Chengcheng, Guo Jinyun, Yuan Jiajia, et al. 2022. SDUST2021GRA: Global marine gravity anomaly model recovered from Ka-band and Ku-band satellite altimeter data. Earth System Science Data, 14(10): 4589–4606. doi: 10.5194/essd-14-4589-2022
|
Zingerle P, Pail R, Gruber T, et al. 2020. The combined global gravity field model XGM2019e. Journal of Geodesy, 94(7): 66. doi: 10.1007/s00190-020-01398-0
|