Citation: | Zhiyong Li, Yuan He, Hongyan He, Caiwei Fu, Mengru Li, Aiming Lu, Dongren Zhang, Tuanjie Che, Songdong Shen. Study of screening, transport pathway, and vasodilation mechanisms on angiotensin-I converting enzyme inhibitory peptide from Ulva prolifera proteins[J]. Acta Oceanologica Sinica, 2023, 42(11): 98-106. doi: 10.1007/s13131-023-2170-1 |
Aguilera-Morales M, Casas-Valdez M, Carrillo-Domı́nguez S, et al. 2005. Chemical composition and microbiological assays of marine algae Enteromorpha spp. as a potential food source. Journal of Food Composition and Analysis, 18(1): 79–88. doi: 10.1016/j.jfca.2003.12.012
|
Balti R, Nedjar-Arroume N, Adjé E Y, et al. 2010. Analysis of novel angiotensin I-converting enzyme inhibitory peptides from enzymatic hydrolysates of cuttlefish ( Sepia officinalis) muscle proteins. Journal of Agricultural and Food Chemistry, 58(6): 3840–3846. doi: 10.1021/jf904300q
|
Cao Dequn, Lv Xiaojing, Xu Xiaoting, et al. 2017. Purification and identification of a novel ACE inhibitory peptide from marine alga Gracilariopsis lemaneiformis protein hydrolysate. European Food Research and Technology, 243(10): 1829–1837. doi: 10.1007/s00217-017-2886-2
|
Chen Junbo, Yu Xiaodong, Chen Qianzi, et al. 2022. Screening and mechanisms of novel angiotensin-I-converting enzyme inhibitory peptides from rabbit meat proteins: A combined in silico and in vitro study. Food Chemistry, 370: 131070. doi: 10.1016/j.foodchem.2021.131070
|
Conradi R A, Wilkinson K F, Rush B D, et al. 1993. In vitro/ in vivo models for peptide oral absorption: Comparison of Caco-2 cell permeability with rat intestinal absorption of renin inhibitory peptides. Pharmaceutical Research, 10(12): 1790–1792. doi: 10.1023/A:1018990602102
|
Ding Xiaomeng, Hu Xiaoyi, Chen Yi, et al. 2021. Differentiated Caco-2 cell models in food-intestine interaction study: Current applications and future trends. Trends in Food Science & Technology, 107: 455–465. doi: 10.1016/j.jpgs.2020.11.015
|
Duerrschmidt N, Wippich N, Goettsch W, et al. 2000. Endothelin-1 induces NAD(P)H oxidase in human endothelial cells. Biochemical and Biophysical Research Communications, 269(3): 713–717. doi: 10.1006/bbrc.2000.2354
|
Ferreira L L G, Andricopulo A D. 2019. ADMET modeling approaches in drug discovery. Drug Discovery Today, 24(5): 1157–1165. doi: 10.1016/j.drudis.2019.03.015
|
Fukuda D, Enomoto S, Nagai R, et al. 2009. Inhibition of renin–angiotensin system attenuates periadventitial inflammation and reduces atherosclerotic lesion formation. Biomedicine & Pharmacotherapy, 63(10): 754–761. doi: 10.1016/j.biopha.2009.02.006
|
Furuta T, Miyabe Y, Yasui H, et al. 2016. Angiotensin I converting enzyme inhibitory peptides derived from phycobiliproteins of dulse Palmaria palmata. Marine Drugs, 14(2): 32. doi: 10.3390/md14020032
|
García-Tejedor A, Gimeno-Alcañíz J V, Tavárez S, et al. 2015. An antihypertensive lactoferrin hydrolysate inhibits angiotensin I-converting enzyme, modifies expression of hypertension-related genes and enhances nitric oxide production in cultured human endothelial cells. Journal of Functional Foods, 12: 45–54. doi: 10.1016/j.jff.2014.11.002
|
Guo Huimin, Richel A, Hao Yuqiong, et al. 2020. Novel dipeptidyl peptidase-IV and angiotensin-I-converting enzyme inhibitory peptides released from quinoa protein by in silico proteolysis. Food Science & Nutrition, 8(3): 1415–1422. doi: 10.1002/fsn3.1423
|
He Yuan, Shen Songdong, Yu Dachun, et al. 2021. The Ulva prolifera genome reveals the mechanism of green tides. Journal of Oceanology and Limnology, 39(4): 1458–1470. doi: 10.1007/s00343-020-0212-5
|
Hidalgo I J, Raub T J, Borchardt R T. 1989. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology, 96(3): 736–749. doi: 10.1016/0016-5085(89)90897-4
|
Horiguchi N, Horiguchi H, Suzuki Y. 2005. Effect of wheat gluten hydrolysate on the immune system in healthy human subjects. Bioscience, Biotechnology, and Biochemistry, 69(12): 2445–2449.
|
Hou Hu, Fan Yan, Li Bafang, et al. 2012. Purification and identification of immunomodulating peptides from enzymatic hydrolysates of Alaska pollock frame. Food Chemistry, 134(2): 821–828. doi: 10.1016/j.foodchem.2012.02.186
|
Imai T, Hirata Y, Emori T, et al. 1992. Induction of endothelin-1 gene by angiotensin and vasopressin in endothelial cells. Hypertension, 19(6_pt_2): 753–757. doi: 10.1161/01.HYP.19.6.753
|
Iwaniak A, Minkiewicz P, Pliszka M, et al. 2020. Characteristics of biopeptides released in silico from collagens using quantitative parameters. Foods, 9(7): 965. doi: 10.3390/foods9070965
|
Ko S C, Kang N, Kim E A, et al. 2012. A novel angiotensin I-converting enzyme (ACE) inhibitory peptide from a marine Chlorella ellipsoidea and its antihypertensive effect in spontaneously hypertensive rats. Process Biochemistry, 47(12): 2005–2011. doi: 10.1016/j.procbio.2012.07.015
|
Kumagai Y, Kitade Y, Kobayashi M, et al. 2020. Identification of ACE inhibitory peptides from red alga Mazzaella japonica. European Food Research and Technology, 246(11): 2225–2231. doi: 10.1007/s00217-020-03567-z
|
Lacroix I M E, Chen Xiumin, Kitts D D, et al. 2017. Investigation into the bioavailability of milk protein-derived peptides with dipeptidyl-peptidase IV inhibitory activity using Caco-2 cell monolayers. Food & Function, 8(2): 701–709. doi: 10.1039/C6FO01411A
|
Lamping K, Faraci F. 2003. Enhanced vasoconstrictor responses in eNOS deficient mice. Nitric Oxide, 8(4): 207–213. doi: 10.1016/S1089-8603(03)00028-4
|
Li Hongmei, Zhang Yongyu, Han Xiurong, et al. 2016. Growth responses of Ulva prolifera to inorganic and organic nutrients: Implications for macroalgal blooms in the southern Yellow Sea, China. Scientific Reports, 6(1): 26498. doi: 10.1038/srep26498
|
Li Zhiyong, Zhao Shan, Xin Xiangdong, et al. 2020. Purification, identification and functional analysis of a novel immunomodulatory peptide from silkworm pupa protein. International Journal of Peptide Research and Therapeutics, 26(1): 243–249. doi: 10.1007/s10989-019-09832-4
|
Lin Kai, Ma Zhao, Ramachandran M, et al. 2020. ACE inhibitory peptide KYIPIQ derived from yak milk casein induces nitric oxide production in HUVECs and diffuses via a transcellular mechanism in Caco-2 monolayers. Process Biochemistry, 99: 103–111. doi: 10.1016/j.procbio.2020.08.031
|
Lin Kai, Zhang Lanwei, Han Xue, et al. 2017. Novel angiotensin I-converting enzyme inhibitory peptides from protease hydrolysates of Qula casein: Quantitative structure-activity relationship modeling and molecular docking study. Journal of Functional Foods, 32: 266–277. doi: 10.1016/j.jff.2017.03.008
|
Lin Kai, Zhang Lanwei, Han Xue, et al. 2018. Yak milk casein as potential precursor of angiotensin I-converting enzyme inhibitory peptides based on in silico proteolysis. Food Chemistry, 254: 340–347. doi: 10.1016/j.foodchem.2018.02.051
|
Liu Ping, Liao Wang, Qi Xingpu, et al. 2020. Identification of immunomodulatory peptides from zein hydrolysates. European Food Research and Technology, 246(5): 931–937. doi: 10.1007/s00217-020-03450-x
|
Liu Yunmeng, Rafferty T M, Rhee S W, et al. 2017. CD8+ T cells stimulate Na-Cl co-transporter NCC in distal convoluted tubules leading to salt-sensitive hypertension. Nature Communications, 8(1): 14037. doi: 10.1038/ncomms14037
|
Maeno M, Yamamoto N, Takano T. 1996. Identification of an antihypertensive peptide from casein hydrolysate produced by a proteinase from Lactobacillus helveticus CP790. Journal of Dairy Science, 79(8): 1316–1321. doi: 10.3168/jds.S0022-0302(96)76487-1
|
Majumder K, Wu Jianping. 2009. Angiotensin I converting enzyme inhibitory peptides from simulated in vitro gastrointestinal digestion of cooked eggs. Journal of Agricultural and Food Chemistry, 57(2): 471–477. doi: 10.1021/jf8028557
|
Mao Ruixue, Wu Lan, Zhu Na, et al. 2020. Immunomodulatory effects of walnut ( Juglans regia L. ) oligopeptides on innate and adaptive immune responses in mice. Journal of Functional Foods, 73: 104068. doi: 10.1016/j.jff.2020.104068
|
Mills K T, Stefanescu A, He Jiang. 2020. The global epidemiology of hypertension. Nature Reviews Nephrology, 16(4): 223–237. doi: 10.1038/s41581-019-0244-2
|
Miyauchi T, Tomobe Y, Shiba R, et al. 1990. Involvement of endothelin in the regulation of human vascular tonus. Potent vasoconstrictor effect and existence in endothelial cells. Circulation, 81(6): 1874–1880. doi: 10.1161/01.CIR.81.6.1874
|
Natesh R, Schwager S L U, Sturrock E D, et al. 2003. Crystal structure of the human angiotensin-converting enzyme–lisinopril complex. Nature, 421(6922): 551–554. doi: 10.1038/nature01370
|
Saikun Pan, Shujun Wang , Lingling Jing , Dongrui Yao, et al. 2016. Purification and characterisation of a novel angiotensin-I converting enzyme (ACE)-inhibitory peptide derived from the enzymatic hydrolysate of Enteromorpha clathrata protein. Food Chemistry, 211: 423–430. doi: 10.1016/j.foodchem.2016.05.087
|
Pei Jingyan, Hua Ying, Zhou Tingyi, et al. 2021. Transport, in vivo antihypertensive effect, and pharmacokinetics of an Angiotensin-Converting Enzyme (ACE) inhibitory peptide LVLPGE. Journal of Agricultural and Food Chemistry, 69(7): 2149–2156. doi: 10.1021/acs.jafc.0c07048
|
Raghavan S, Kristinsson H G. 2009. ACE-inhibitory activity of tilapia protein hydrolysates. Food Chemistry, 117(4): 582–588. doi: 10.1016/j.foodchem.2009.04.058
|
Robb G B, Carson A R, Tai S C, et al. 2004. Post-transcriptional regulation of endothelial nitric-oxide synthase by an overlapping antisense mRNA transcript. Journal of Biological Chemistry, 279(36): 37982–37996. doi: 10.1074/jbc.M400271200
|
Sütas Y, Soppi E, Korhonen H, et al. 1996. Suppression of lymphocyte proliferation in vitro by bovine caseins hydrolyzed with Lactobacillus casei GG–derived enzymes. Journal of Allergy and Clinical Immunology, 98(1): 216–224. doi: 10.1016/S0091-6749(96)70245-2
|
Sangsawad P, Choowongkomon K, Kitts D D, et al. 2018. Transepithelial transport and structural changes of chicken angiotensin I-converting enzyme (ACE) inhibitory peptides through Caco-2 cell monolayers. Journal of Functional Foods, 45: 401–408. doi: 10.1016/j.jff.2018.04.020
|
Sessa W C. 2004. eNOS at a glance. Journal of Cell Science, 117(12): 2427–2429. doi: 10.1242/jcs.01165
|
Sumikawa K, Takei K, Kumagai Y, et al. 2020. In silico analysis of ACE inhibitory peptides from chloroplast proteins of red alga Grateloupia asiatica. Marine Biotechnology, 22(3): 391–402. doi: 10.1007/s10126-020-09959-2
|
Tan I H, Blomster J, Hansen G, et al. 1999. Molecular phylogenetic evidence for a reversible morphogenetic switch controlling the gross morphology of two common genera of green seaweeds, Ulva and Enteromorpha. Molecular Biology and Evolution, 16(8): 1011–1018. doi: 10.1093/oxfordjournals.molbev.a026190
|
Udenigwe C C. 2014. Bioinformatics approaches, prospects and challenges of food bioactive peptide research. Trends in Food Science & Technology, 36(2): 137–143. doi: 10.1016/j.jpgs.2014.02.004
|
Udenigwe C C. 2016. Towards rice bran protein utilization: In silico insight on the role of oryzacystatins in biologically-active peptide production. Food Chemistry, 191: 135–138. doi: 10.1016/j.foodchem.2015.01.043
|
Wen Li, Huang Lu, Li Yiwei, et al. 2021. New peptides with immunomodulatory activity identified from rice proteins through peptidomic and in silico analysis. Food Chemistry, 364: 130357. doi: 10.1016/j.foodchem.2021.130357
|
Xie Jingli, Chen Xujun, Wu Junjie, et al. 2018. Antihypertensive effects, molecular docking study, and isothermal titration calorimetry assay of angiotensin I-converting enzyme inhibitory peptides from Chlorella vulgaris. Journal of Agricultural and Food Chemistry, 66(6): 1359–1368. doi: 10.1021/acs.jafc.7b04294
|
Xu Qingbiao, Fan Hongbing, Yu Wenlin, et al. 2017. Transport study of egg-derived antihypertensive peptides (LKP and IQW) using Caco-2 and HT29 coculture monolayers. Journal of Agricultural and Food Chemistry, 65(34): 7406–7414. doi: 10.1021/acs.jafc.7b02176
|
Xu Zhenqiu, Wu Changping, Sun-Waterhouse D, et al. 2021. Identification of post-digestion angiotensin-I converting enzyme (ACE) inhibitory peptides from soybean protein isolate: Their production conditions and in silico molecular docking with ACE. Food Chemistry, 345: 128855. doi: 10.1016/j.foodchem.2020.128855
|
Yang Qian, Cai Xixi, Huang Muchen, et al. 2020. A specific peptide with immunomodulatory activity from Pseudostellaria heterophylla and the action mechanism. Journal of Functional Foods, 68: 103887. doi: 10.1016/j.jff.2020.103887
|
Yang Ruiyue, Zhang Zhaofeng, Pei Xinrong, et al. 2009. Immunomodulatory effects of marine oligopeptide preparation from Chum Salmon ( Oncorhynchus keta) in mice. Food Chemistry, 113(2): 464–470. doi: 10.1016/j.foodchem.2008.07.086
|
Ye Naihao, Zhang Xiaowen, Mao Yuze, et al. 2011. ‘Green tides’ are overwhelming the coastline of our blue planet: taking the world’s largest example. Ecological Research, 26(3): 477–485. doi: 10.1007/s11284-011-0821-8
|
Zabel U, Weeger M, La M, et al. 1998. Human soluble guanylate cyclase: functional expression and revised isoenzyme family. Biochemical Journal, 335(1): 51–57. doi: 10.1042/bj3350051
|