Citation: | Xiaohe Lai, Chuqing Zeng, Yan Su, Shaoxiang Huang, Jianping Jia, Cheng Chen, Jun Jiang. Vulnerability assessment of coastal wetlands in Minjiang River Estuary based on cloud model under sea level rise[J]. Acta Oceanologica Sinica, 2023, 42(7): 160-174. doi: 10.1007/s13131-023-2169-7 |
Bryan B, Harvey N, Belperio T, et al. 2001. Distributed process modeling for regional assessment of coastal vulnerability to sea-level rise. Environmental Modeling & Assessment, 6(1): 57–65
|
Chen Bin, Yu Weiwei, Chen Guangcheng, et al. 2019. Coastal wetland restoration: an overview. Journal of Applied Oceanography (in Chinese), 38(4): 464–473
|
Chu Jinlong, Gao Shu, Xu Jian’gang. 2005. Risk and safety evaluation methodologies for coastal systems: a review. Marine Science Bulletin (in Chinese), 24(3): 80–87
|
Cui Lifang. 2016. Vulnerability assessment of the coastal wetlands in the Yangtze Estuary, China to sea-level rise (in Chinese) [dissertation]. Shanghai: East China Normal University
|
Feng Hongyu. 2020. The study on the surface elevation change with the Spartina alterniflora invasion in coastal wetlands of China (in Chinese) [dissertation]. Xiamen: Xiamen University
|
Gao Yuqin, Lai Lijuan, Yao Min, et al. 2018. Water environment quality assessment based on normal cloud-fuzzy variable coupling model. Journal of Water Resources and Water Engineering (in Chinese), 29(5): 1–7
|
Gornitz V. 1991. Global coastal hazards from future sea level rise. Global and Planetary Change, 3(4): 379–398. doi: 10.1016/0921-8181(91)90118-G
|
He Tao, Sun Zhigao, Li Jiabing, et al. 2018. Variations in total sulfur content in plant-soil systems of Phragmites australis and Cyperus malaccensis in the process of their spatial expansion in the Min River Estuary. Acta Ecologica Sinica (in Chinese), 38(5): 1607–1618
|
Hou Liping. 2016. Application of multi-objective fuzzy hierarchy algorithm in optimization of anti-seepage scheme for reservoir dam foundation. Technical Supervision in Water Resources (in Chinese), 24(6): 42–44, 59
|
Huo Shiping, Zhong Tiejun, Li Xia, et al. 2022. Research on risk assessment study of engineering blasting project based on IAHP and cloud model. Project Management Technology (in Chinese), 20(9): 67–72
|
Intergovernmental Panel on Climate Change. 2001. Climate Change 2001: Impacts, Adaptation, and Vulnerability. Cambridge: Cambridge University Press
|
Li Shasha, Meng Xianwei, Ge Zhenming, et al. 2014. Vulnerability assessment on the mangrove ecosystems in Qinzhou Bay under sea level rise. Acta Ecologica Sinica (in Chinese), 34(10): 2702–2711
|
Li Ruiqian, Xu Chenglei, Li Yongfu, et al. 2022. Progress of international research on coastal resilience and implications for China. Resources Science (in Chinese), 44(2): 232–246
|
Liu Baigui. 2008. Litter decomposition of Phragmites australis, Cyperus malaccensis and Spartina alterniflora in the Wetland of Minjiang River Estuary (in Chinese) [dissertation]. Fuzhou: Fujian Normal University
|
Mi Huishan. 2019. Distribution characteristics of SiO2 and the potential of phytolith sequestration carbon in typical plant communities and ecotones in the Min River Estuary (in Chinese) [dissertation]. Fuzhou: Fujian Normal University
|
Narayan S, Hanson S, Nicholls R J, et al. 2012. A holistic model for coastal flooding using system diagrams and the Source-Pathway-Receptor (SPR) concept. Natural Hazards and Earth System Sciences, 12(5): 1431–1439. doi: 10.5194/nhess-12-1431-2012
|
Osland M J, Chivoiu B, Enwright N M, et al. 2022. Migration and transformation of coastal wetlands in response to rising seas. Science Advances, 8(26): eabo5174. doi: 10.1126/sciadv.abo5174
|
Qi Yue, Fu Yuanbin, Wang Na, et al. 2020. Ecological vulnerability assessment of wetland in Liao Estuary based on objective framework method. Marine Science Bulletin (in Chinese), 39(2): 257–265
|
Shen Jing. 2018. Research on comprehensive ecological vulnerability assessment and development countermeasures (in Chinese) [dissertation]. Beijing: North China Electric Power University
|
Shi Jing, Shi Peiji, Wang Ziyang, et al. 2022. Effects of human disturbances on dynamic evolution of ecological vulnerability: a case study over Lanzhou-Xining urban agglomeration. China Environmental Science (in Chinese), 1–13. https://kns.cnki.net/kcms/detail/11.2201.x.20221117.1131.004.html
|
Tian Wenkai. 2018. Application of normal cloud model in flood risk assessment of flood disaster. Water Resources Planning and Design (in Chinese), (3): 33–35, 132, 135
|
Wang Ning, Zhang Liquan, Yuan Lin, et al. 2012. Research into vulnerability assessment for coastal zones in the context of climate change. Acta Ecologica Sinica (in Chinese), 32(7): 2248–2258. doi: 10.5846/stxb201109291437
|
Wang Guodong, Zhao Yantong, Zhao Meiling, et al. 2021. A research paradigm for assessing the vulnerability of coastal wetlands to sea level rise. Wetland Science (in Chinese), 19(1): 59–63
|
Wu Qinglin. 2014. Research on bid evaluation method of water conservancy project under fuzzy decision theory. Water Resources Planning and Design (in Chinese), (6): 41–43, 54
|
Wu Guanghe, Wang Naiang, Hu Shuangxi, et al. 2008. Physical Geography (in Chinese). 4th ed. Beijing: Higher Education Press, 18–23
|
Xu Yijian. 2020. Development strategy of China’s coastal cities for addressing climate change. Climate Change Research (in Chinese), 16(1): 88–98
|
Zhang Tong, Yu Yongqiang, Xiao Cunde, et al. 2022. Interpretation of IPCC AR6 report: monitoring and projections of global and regional sea level change. Climate Change Research (in Chinese), 18(1): 12–18
|
Zhou Botao, Qian Jin. 2021. Changes of weather and climate extremes in the IPCC AR6. Climate Change Research (in Chinese), 17(6): 713–718
|
Zhou Qigang, Zhang Xiaoyuan, Wang Zhaolin. 2014. Land use ecological risk evaluation in Three Gorges Reservoir Area based on normal cloud model. Transactions of the Chinese Society of Agricultural Engineering (in Chinese), 30(23): 289–297
|
Zhu Zhengtao, Cai Feng, Cao Chao, et al. 2019. Assessment of island coastal vulnerability based on cloud model: a case study of Xiamen Island. Marine Science Bulletin (in Chinese), 38(4): 462–469
|