Volume 42 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Shan Liu, Xueyi Jing, Xingrong Chen, Huijun Wang. An assessment of the subduction rate in the CMIP6 historical experiment[J]. Acta Oceanologica Sinica, 2023, 42(1): 44-60. doi: 10.1007/s13131-022-2108-z
Citation: Shan Liu, Xueyi Jing, Xingrong Chen, Huijun Wang. An assessment of the subduction rate in the CMIP6 historical experiment[J]. Acta Oceanologica Sinica, 2023, 42(1): 44-60. doi: 10.1007/s13131-022-2108-z

An assessment of the subduction rate in the CMIP6 historical experiment

doi: 10.1007/s13131-022-2108-z
Funds:  The National Natural Science Foundation of China under contract Nos 42192561 and 41605052; the National Key Research and Development Program of China under contract No. 2020YFA0608804.
More Information
  • Corresponding author: E-mail: luckychen@nmefc.cn
  • Received Date: 2022-07-01
  • Accepted Date: 2022-09-13
  • Available Online: 2022-12-21
  • Publish Date: 2023-01-25
  • Subduction process is a dynamical bridge for the exchanges of heat between the atmosphere and subsurface ocean water, which is regarded as a central proxy for the ocean climate studies. Given its key indicator in climate signals, it is of importance to examine the ability of a model to simulate the global subduction rate before investigating the climate dynamics. In this paper, we evaluated the ability of 21 climate models from Coupled Model Intercomparison Project Phase 6 (CMIP6) in simulating the subduction rate. In general, the simulation ability of the models to the subduction climatology is better than that to the long-term variation trend. Based on the comprehensive analysis of climatology distribution and long-term trend of the subduction rate, GISS-E2-1-G performs better in reproducing the subduction rate climatology and IPSL-CM6A-LR can simulate positive long-term trend for both the global mean subduction rate and the lateral induction term in the Antarctic Circumpolar Current (ACC) region. However, it is still challenging to capture both the distribution characteristics of the subduction climatology and the long-term temporal trend for the 21 CMIP6 models. In addition, the model results demonstrate that, the ACC area is the major region contributing to the long-term trend of the global mean subduction rate. The analysis in this paper indicates that the poor simulation ability of reproducing the long-term trend of global mean subduction rate might be attributed to the ocean dynamics, for example, the zonal velocity at the bottom mixed layer and zonal gradient of mixed layer depth.
  • loading
  • Bates N R, Pequignet A C, Johnson R J, et al. 2002. A short-term sink for atmospheric CO2 in subtropical mode water of the North Atlantic Ocean. Nature, 420(6915): 489–493. doi: 10.1038/nature01253
    Chen Xingrong, Liu Shan, Cao Yi, et al. 2018. Potential effects of subduction rate in the key ocean on global warming hiatus. Acta Oceanologica Sinica, 37(3): 63–68. doi: 10.1007/s13131-017-1130-z
    Chen Ju, Qu Tangdong, Sasaki Y N, et al. 2010. Anti-correlated variability in subduction rate of the western and eastern North Pacific Oceans identified by an eddy-resolving ocean GCM. Geophysical Research Letters, 37(23): L23608. doi: 10.1029/2010GL045239
    Eyring V, Bony S, Meehl G A, et al. 2016. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5): 1937–1958. doi: 10.5194/gmd-9-1937-2016
    Gao Libao, Rintoul S R, Yu Weidong. 2018. Recent wind-driven change in subantarctic mode water and its impact on ocean heat storage. Nature Climate Change, 8: 58–63. doi: 10.1038/s41558-017-0022-8
    Giese B S, Ray S. 2011. El Niño variability in simple ocean data assimilation (SODA), 1871–2008. Journal of Geophysical Research: Oceans, 116(C2): C02024. doi: 10.1029/2010JC006695
    Gu Daifang, Philander S G H. 1997. Interdecadal climate fluctuations that depend on exchanges between the Tropics and Extratropics. Science, 275(5301): 805–807. doi: 10.1126/science.275.5301.805
    Herraiz-Borreguero L, Rintoul S R. 2010. Subantarctic mode water variability influenced by mesoscale eddies south of Tasmania. Journal of Geophysical Research: Oceans, 115(C4): C04004. doi: 10.1029/2008JC005146
    Hong Yu, Du Yan, Xia Xingyue, et al. 2021. Subantarctic mode water and its long-term change in CMIP6 models. Journal of Climate, 34(23): 9385–9400. doi: 10.1175/JCLI-D-21-0133.1
    Huang Ruixin, Qiu Bo. 1994. Three-dimensional structure of the wind-driven circulation in the subtropical North Pacific. Journal of Physical Oceanography, 24(7): 1608–1622. doi: 10.1175/1520-0485(1994)024<1608:TDSOTW>2.0.CO;2
    Kelley M, Schmidt G A, Nazarenko L S, et al. 2020. GISS-E2.1: configurations and climatology. Journal of Advances in Modeling Earth Systems, 12(8): e2019MS002025. doi: 10.1029/2019MS002025
    Kubokawa A. 1999. Ventilated thermocline strongly affected by a deep mixed layer: a theory for subtropical countercurrent. Journal of Physical Oceanography, 29(6): 1314–1333. doi: 10.1175/1520-0485(1999)029<1314:VTSABA>2.0.CO;2
    Ladd C, Thompson L A. 2002. Decadal variability of North Pacific Central Mode Water. Journal of Physical Oceanography, 32(10): 2870–2881. doi: 10.1175/1520-0485(2002)0322.0.CO;2
    Levitus S. 1982. Climatological Atlas of the World Ocean. Princeton, NJ: NOAA
    Li Guancheng, Cheng Lijing, Zhu Jiang, et al. 2020. Increasing ocean stratification over the past half-century. Nature Climate Change, 10(12): 1116–1123. doi: 10.1038/s41558-020-00918-2
    Liu Zhengyu, Huang Boyin. 1998. Why is there a tritium maximum in the central equatorial Pacific thermocline?. Journal of Physical Oceanography, 28(7): 1527–1533. doi: 10.1175/1520-0485(1998)028<1527:WITATM>2.0.CO;2
    Liu Lingling, Huang Ruixin. 2012. The global subduction/obduction rates: Their interannual and decadal variability. Journal of Climate, 25(4): 1096–1115. doi: 10.1175/2011JCLI4228.1
    Liu Lingling, Wang Fan, Huang Ruixin. 2011. Enhancement of subduction/obduction due to hurricane-induced mixed layer deepening. Deep-Sea Research Part I: Oceanographic Research Papers, 58(6): 658–667. doi: 10.1016/j.dsr.2011.04.003
    Liu Chengyan, Wu Lixin. 2012. An intensification trend of South Pacific Mode Water subduction rates over the 20th century. Journal of Geophysical Research: Oceans, 117(C7): C07009. doi: 10.1029/2011JC007755
    Liu Cong, Xu Lixiao, Xie Shangping, et al. 2019. Effects of anticyclonic eddies on the multicore structure of the North Pacific subtropical mode water based on Argo observations. Journal of Geophysical Research: Oceans, 124(11): 8400–8413. doi: 10.1029/2019JC015631
    Luo Yiyong, Liu Qinyu, Rothstein L M. 2009. Simulated response of North Pacific mode waters to global warming. Geophysical Research Letters, 36(23): L23609. doi: 10.1029/2009GL040906
    Luo Yiyong, Liu Qinyu, Rothstein L M. 2011. Increase of South Pacific eastern subtropical mode water under global warming. Geophysical Research Letters, 38(1): L01601. doi: 10.1029/2010GL045878
    Ma Jie, Lan Jian. 2017. Interannual variability of Indian Ocean subtropical mode water subduction rate. Climate Dynamics, 48(11): 4093–4107. doi: 10.1007/s00382-016-3322-1
    McPhaden M J, Zhang Dongxiao. 2002. Slowdown of the meridional overturning circulation in the upper Pacific Ocean. Nature, 415(6872): 603–608. doi: 10.1038/415603a
    Oka E, Qiu Bo. 2012. Progress of North Pacific mode water research in the past decade. Journal of Oceanography, 68(1): 5–20. doi: 10.1007/s10872-011-0032-5
    Oka E, Suga T. 2005. Differential formation and circulation of North Pacific central mode water. Journal of Physical Oceanography, 35(11): 1997–2011. doi: 10.1175/JPO2811.1
    Palter J B, Lozier M S, Barber R T. 2005. The effect of advection on the nutrient reservoir in the North Atlantic subtropical gyre. Nature, 437(7059): 687–692. doi: 10.1038/nature03969
    Qiu Zishan, Wei Zexun, Nie Xunwei, et al. 2021. Southeast Indian Subantarctic Mode water in the CMIP6 coupled models. Journal of Geophysical Research: Oceans, 126(7): e2020JC016872. doi: 10.1029/2020JC016872
    Qu Tangdong, Chen Ju. 2009. A North Pacific decadal variability in subduction rate. Geophysical Research Letters, 36(22): L22602. doi: 10.1029/2009GL040914
    Qu Tangdong, Xie Shangping, Mitsudera H, et al. 2002. Subduction of the North Pacific mode waters in a global high-resolution GCM. Journal of Physical Oceanography, 32(3): 746–763. doi: 10.1175/1520-0485(2002)032<0746:SOTNPM>2.0.CO;2
    Sallée J B, Shuckburgh E, Bruneau N, et al. 2013a. Assessment of Southern Ocean water mass circulation and characteristics in CMIP5 models: Historical bias and forcing response. Journal of Geophysical Research: Oceans, 118(4): 1830–1844. doi: 10.1002/jgrc.20135
    Sallée J B, Shuckburgh E, Bruneau N, et al. 2013b. Assessment of Southern Ocean mixed-layer depths in CMIP5 models: Historical bias and forcing response. Journal of Geophysical Research: Oceans, 118(4): 1845–1862. doi: 10.1002/jgrc.20157
    Suga T, Aoki Y, Saito H, et al. 2008. Ventilation of the North Pacific subtropical pycnocline and mode water formation. Progress in Oceanography, 77(4): 285–297. doi: 10.1016/j.pocean.2006.12.005
    Suga T, Hanawa K. 1995. The subtropical mode water circulation in the North Pacific. Journal of Physical Oceanography, 25(5): 958–970. doi: 10.1175/1520-0485(1995)025<0958:TSMWCI>2.0.CO;2
    Toyama K, Iwasaki A, Suga T. 2015. Interannual variation of annual subduction rate in the North Pacific estimated from a gridded Argo product. Journal of Physical Oceanography, 45(9): 2276–2293. doi: 10.1175/JPO-D-14-0223.1
    Xia Xingxue, Xu Lixiao, Xie Shangping, et al. 2021. Fast and slow responses of the Subantarctic Mode Water in the South Indian Ocean to global warming in CMIP5 extended RCP4.5 simulations. Climate Dynamics, 56(9): 3157–3171. doi: 10.1007/s00382-021-05635-w
    Xu Lixiao, Li Peiliang, Xie Shangping, et al. 2016. Observing mesoscale eddy effects on mode-water subduction and transport in the North Pacific. Nature Communications, 7: 10505. doi: 10.1038/ncomms10505
    Xu Lixiao, Xie Shangping, Jing Zhao, et al. 2017. Observing subsurface changes of two anticyclonic eddies passing over the Izu-Ogasawara Ridge. Geophysical Research Letters, 44(4): 1857–1865. doi: 10.1002/2016GL072163
    Xu Lixiao, Xie Shangping, McClean J L, et al. 2014. Mesoscale eddy effects on the subduction of North Pacific mode waters. Journal of Geophysical Research: Oceans, 119(8): 4867–4886. doi: 10.1002/2014JC009861
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(1)

    Article Metrics

    Article views (453) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return