Volume 42 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Hang Wu, Binbin Deng, Jinlong Wang, Sheng Zeng, Juan Du, Peng Yu, Qianqian Bi, Jinzhou Du. Sedimentary record of climate change in a high latitude fjord—Kongsfjord[J]. Acta Oceanologica Sinica, 2023, 42(1): 91-102. doi: 10.1007/s13131-022-2098-x
Citation: Hang Wu, Binbin Deng, Jinlong Wang, Sheng Zeng, Juan Du, Peng Yu, Qianqian Bi, Jinzhou Du. Sedimentary record of climate change in a high latitude fjord—Kongsfjord[J]. Acta Oceanologica Sinica, 2023, 42(1): 91-102. doi: 10.1007/s13131-022-2098-x

Sedimentary record of climate change in a high latitude fjord—Kongsfjord

doi: 10.1007/s13131-022-2098-x
Funds:  The National Natural Science Foundation of China under contract Nos 42107251 and 41706089; the Natural Science Foundation of Fujian Province under contract No. 2020J05232.
More Information
  • Corresponding author: E-mail: jlwang@sklec.ecnu.edu.cn
  • Received Date: 2022-05-26
  • Accepted Date: 2022-08-15
  • Available Online: 2022-12-29
  • Publish Date: 2023-01-25
  • The sedimentary record of climate change in the Arctic region is useful for understanding global warming. Kongsfjord is located in the subpolar region of the Arctic and is a suitable site for studying climate change. Glacier retreat is occurring in this region due to climate change, leading to an increase in meltwater outflow with a high debris content. In August 2017, we collected a sediment Core Z3 from the central fjord near the Yellow River Station. Then, we used the widely used chronology method of 210Pb, 137Cs, and other parameters to reflect the climate change record in the sedimentary environment of Kongsfjord. The results showed that after the mid-late 1990s, the mass accumulation rate of this core increased from 0.10 g/(cm2·a) to 0.34 g/(cm2·a), while the flux of 210Pbex increased from 125 Bq/(m2·a) to 316 Bq/(m2·a). The higher sedimentary inventory of 210Pbex in Kongsfjord compared to global fallout might have been caused by sediment focusing, boundary scavenging, and riverine input. Similarities between the inventory of 137Cs and global fallout indicated that terrestrial particulate matter was the main source of 137Cs in fjord sediments. The sedimentation rate increased after 1997, possibly due to the increased influx of glacial meltwater containing debris. In addition, the 137Cs activity, percentage of organic carbon (OC), and OC/total nitrogen concentration ratio showed increasing trends toward the top of the core since 1997, corresponding to a decrease in the mass balance of glaciers in the region. The results of δ13C, δ15N and OC/TN concentration ratio showed both terrestrial and marine sources contributed to the organic matter in Core Z3. The relative contribution of terrestrial organic matter which was calculated by a two-endmember model showed an increased trend since mid-1990s. All these data indicate that global climate change has a significant impact on Arctic glaciers.
  • loading
  • Aarkrog A. 2003. Input of anthropogenic radionuclides into the World Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 50(17–21): 2597–2606,
    Aliani S, Bartholini G, Degl'innocenti F, et al. 2004. Multidisciplinary investigations in the marine environment of the inner Kongsfiord, Svalbard Islands (September 2000 and 2001). Chemistry and Ecology, 20(S1): S19–S28. doi: 10.1080/02757540410001655396
    Andreassen K, Hubbard A, Winsborrow M, et al. 2017. Massive blow-out craters formed by hydrate-controlled methane expulsion from the Arctic seafloor. Science, 356(6341): 948–953. doi: 10.1126/science.aal4500
    Andrews J E, Greenaway A M, Dennis P F. 1998. Combined carbon isotope and C/N ratios as indicators of source and fate of organic matter in a poorly flushed, tropical estuary: Hunts Bay, Kingston Harbour, Jamaica. Estuarine, Coastal and Shelf Science, 46(5): 743–756,
    Appleby P G. 2004. Environmental change and atmospheric contamination on Svalbard: sediment chronology. Journal of Paleolimnology, 31(4): 433–443. doi: 10.1023/B:JOPL.0000022545.73163.ed
    Barros G V, Martinelli L A, Novais T M O, et al. 2010. Stable isotopes of bulk organic matter to trace carbon and nitrogen dynamics in an estuarine ecosystem in Babitonga Bay (Santa Catarina, Brazil). Science of the Total Environment, 408(10): 2226–2232. doi: 10.1016/j.scitotenv.2010.01.060
    Belicka L L, Harvey H R. 2009. The sequestration of terrestrial organic carbon in Arctic Ocean sediments: A comparison of methods and implications for regional carbon budgets. Geochimica et Cosmochimica Acta, 73(20): 6231–6248. doi: 10.1016/j.gca.2009.07.020
    Bendixen M, Iversen L L, Bjørk A A, et al. 2017. Delta progradation in Greenland driven by increasing glacial mass loss. Nature, 550(7674): 101–104. doi: 10.1038/nature23873
    Berge J, Heggland K, Lønne O J, et al. 2015. First records of Atlantic mackerel (Scomber scombrus) from the Svalbard Archipelago, Norway, with possible explanations for the extension of its distribution. Arctic, 68(1): 54–61. doi: 10.14430/arctic4455
    Bogen J, Bønsnes T E. 2003. Erosion and sediment transport in High Arctic rivers, Svalbard. Polar Research, 22(2): 175–189. doi: 10.3402/polar.v22i2.6454
    Boldt K V, Nittrouer C A, Hallet B, et al. 2013. Modern rates of glacial sediment accumulation along a 15°S-N transect in fjords from the Antarctic Peninsula to southern Chile. Journal of Geophysical Research: Earth Surface, 118(4): 2072–2088. doi: 10.1002/jgrf.20145
    Bourgeois S, Kerhervé P, Calleja M L, et al. 2016. Glacier inputs influence organic matter composition and prokaryotic distribution in a high Arctic fjord (Kongsfjorden, Svalbard). Journal of Marine Systems, 164: 112–127. doi: 10.1016/j.jmarsys.2016.08.009
    Box J E, Colgan W T, Christensen T R, et al. 2019. Key indicators of Arctic climate change: 1971–2017. Environmental Research Letters, 14(4): 045010. doi: 10.1088/1748-9326/aafc1b
    Carreira R S, Wagener A L R, Readman J W, et al. 2002. Changes in the sedimentary organic carbon pool of a fertilized tropical estuary, Guanabara Bay, Brazil: an elemental, isotopic and molecular marker approach. Marine Chemistry, 79(3–4): 207–227,
    Choudhary S, Nayak G N, Khare N. 2020. Source, mobility, and bioavailability of metals in fjord sediments of Krossfjord-Kongsfjord system, Arctic, Svalbard. Environmental Science and Pollution Research, 27(13): 15130–15148. doi: 10.1007/s11356-020-07879-1
    Christiansen H H, Etzelmüller B, Isaksen K, et al. 2010. The thermal state of permafrost in the Nordic area during the international polar year 2007–2009. Permafrost and Periglacial Processes, 21(2): 156–181. doi: 10.1002/ppp.687
    Cowan E A, Seramur K C, Powell R D, et al. 2010. Fjords as temporary sediment traps: history of glacial erosion and deposition in Muir Inlet, Glacier Bay National Park, southeastern Alaska. Geological Society of America Bulletin, 122(7–8): 1067–1080,
    D’Angelo A, Giglio F, Miserocchi S, et al. 2018. Multi-year particle fluxes in Kongsfjorden, Svalbard. Biogeosciences, 15(17): 5343–5363. doi: 10.5194/bg-15-5343-2018
    Dibb J E, Jaffrezo J L. 1993. Beryllium-7 and lead-210 in aerosol and snow in the Dye 3 gas, aerosol and snow sampling program. Atmospheric Environment. Part A. General Topics, 27(17–18): 2751–2760,
    Du Jinzhou, Wu Ying, Huang Dekun, et al. 2010. Use of 7Be, 210Pb and 137Cs tracers to the transport of surface sediments of the Changjiang Estuary, China. Journal of Marine Systems, 82(4): 286–294. doi: 10.1016/j.jmarsys.2010.06.003
    Ferreira P A D L, Ribeiro A P, Nascimento M G D, et al. 2013. 137Cs in marine sediments of Admiralty Bay, King George Island, Antarctica. Science of the Total Environment, 443: 505–510. doi: 10.1016/j.scitotenv.2012.11.032
    Goldberg E D. 1963. Geochronology with 210Pb. In: Radioactive Dating. Vienna: IAEA, 121–131
    Goñi M A, Teixeira M J, Perkey D W. 2003. Sources and distribution of organic matter in a river-dominated estuary (Winyah Bay, SC, USA). Estuarine, Coastal and Shelf Science, 57(5–6): 1023–1048,
    Gordon E S, Goñi M A. 2003. Sources and distribution of terrigenous organic matter delivered by the Atchafalaya River to sediments in the northern Gulf of Mexico. Geochimica et Cosmochimica Acta, 67(13): 2359–2375. doi: 10.1016/s0016-7037(02)01412-6
    Gwynn J P, Dowdall M, Davids C, et al. 2004. The radiological environment of Svalbard. Polar Research, 23(2): 167–180. doi: 10.1111/j.1751-8369.2004.tb00006.x
    He Qing, Walling D E. 1996. Interpreting particle size effects in the adsorption of 137Cs and unsupported 210Pb by mineral soils and sediments. Journal of Environmental Radioactivity, 30(2): 117–137. doi: 10.1016/0265-931x(96)89275-7
    Hedges J I, Clark W A, Come G L. 1988. Organic matter sources to the water column and surficial sediments of a marine bay. Limnology and Oceanography, 33(5): 1116–1136. doi: 10.4319/lo.1988.33.5.1116
    Hinton T G, Kaplan D I, Knox A S, et al. 2006. Use of illite clay for in situ remediation of 137Cs-contaminated water bodies: field demonstration of reduced biological uptake. Environmental Science & Technology, 40(14): 4500–4505. doi: 10.1021/es060124x
    Hodgkins R, Bryant R, Darlington E, et al. 2016. Pre-melt-season sediment plume variability at Jökulsárlón, Iceland, a preliminary evaluation using in-situ spectroradiometry and satellite imagery. Annals of Glaciology, 57(73): 39–46. doi: 10.1017/aog.2016.20
    Husum K, Howe J A, Baltzer A, et al. 2019. The marine sedimentary environments of Kongsfjorden, Svalbard: an archive of polar environmental change. Polar Research, 38: 3380. doi: 10.33265/polar.v38.3380
    Jaworowski Z, Hoff P, Hagen J O, et al. 1997. A highly radioactive Chernobyl deposit in a Scandinavian Glacier. Journal of Environmental Radioactivity, 35(1): 91–108. doi: 10.1016/S0265-931X(96)00004-5
    Kim J H, Peterse F, Willmott V, et al. 2011. Large ancient organic matter contributions to Arctic marine sediments (Svalbard). Limnology and Oceanography, 56(4): 1463–1474. doi: 10.4319/lo.2011.56.4.1463
    Klaminder J, Appleby P, Crook P, et al. 2012. Post-deposition diffusion of 137Cs in lake sediment: implications for radiocaesium dating. Sedimentology, 59(7): 2259–2267. doi: 10.1111/j.1365-3091.2012.01343.x
    Knies J, Martinez P. 2009. Organic matter sedimentation in the western Barents Sea region: terrestrial and marine contribution based on isotopic composition and organic nitrogen content. Norwegian Journal of Geology, 89: 79–89
    Koide M, Soutar A, Goldberg E D. 1972. Marine geochronology with 210Pb. Earth and Planetary Science Letters, 14(3): 442–446. doi: 10.1016/0012-821x(72)90146-x
    Koppes M, Hallet B, Rignot E, et al. 2015. Observed latitudinal variations in erosion as a function of glacier dynamics. Nature, 526(7571): 100–103. doi: 10.1038/nature15385
    Koziorowska K, Kuliński K, Pempkowiak J. 2016. Sedimentary organic matter in two Spitsbergen fjords: terrestrial and marine contributions based on carbon and nitrogen contents and stable isotopes composition. Continental Shelf Research, 113: 38–46. doi: 10.1016/j.csr.2015.11.010
    Koziorowska K, Kuliński K, Pempkowiak J. 2017. Distribution and origin of inorganic and organic carbon in the sediments of Kongsfjorden, Northwest Spitsbergen, European Arctic. Continental Shelf Research, 150: 27–35. doi: 10.1016/j.csr.2017.08.023
    Krishnaswamy S, Lal D, Martin J M, et al. 1971. Geochronology of lake sediments. Earth and Planetary Science Letters, 11(1–5): 407–414,
    Kuliński K, Kędra M, Legeżyńska J, et al. 2014. Particulate organic matter sinks and sources in high Arctic fjord. Journal of Marine Systems, 139: 27–37. doi: 10.1016/j.jmarsys.2014.04.018
    Kuzyk Z Z A, Gobeil C, Macdonald R W. 2013. 210Pb and 137Cs in margin sediments of the Arctic Ocean: controls on boundary scavenging. Global Biogeochemical Cycles, 27(2): 422–439. doi: 10.1002/gbc.20041
    Lamb A L, Wilson G P, Leng M J. 2006. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material. Earth-Science Reviews, 75(1–4): 29–57,
    Larsen J, Appleby P G, Christensen G N, et al. 2010. Historical and geographical trends in sediment chronology from lakes and marine sites along the Norwegian coast. Water, Air, and Soil Pollution, 206(1–4): 237–250,
    Lefauconnier B, Hagen J O, Rudant J P. 1994. Flow speed and calving rate of Kongsbreen glacier, Svalbard, using SPOT images. Polar Research, 13(1): 59–65. doi: 10.1111/j.1751-8369.1994.tb00437.x
    Luckman A, Benn D I, Cottier F, et al. 2015. Calving rates at tidewater glaciers vary strongly with ocean temperature. Nature Communications, 6(1): 8566. doi: 10.1038/ncomms9566
    Lydersen C, Assmy P, Falk-Petersen S, et al. 2014. The importance of tidewater glaciers for marine mammals and seabirds in Svalbard, Norway. Journal of Marine Systems, 129: 452–471. doi: 10.1016/j.jmarsys.2013.09.006
    Magand O, Ferrari C, Gauchard P A, et al. 2006. Analysis of 7Be and 210Pb air concentrations in Ny-Ålesund, Svalbard: CHIMERPOL II project, preliminary results. Memoirs of National Institute of Polar Research, 59: 96–115
    Maksymowska D, Richard P, Piekarek-Jankowska H, et al. 2000. Chemical and isotopic composition of the organic matter sources in the Gulf of Gdansk (Southern Baltic Sea). Estuarine, Coastal and Shelf Science, 51(5): 585–598,
    Matishov G G, Matishov D G, Usyagina I S, et al. 2011. Assessment of 137Cs and 90Sr fluxes in the Barents Sea. Doklady Earth Sciences, 439(2): 1190–1195. doi: 10.1134/s1028334x11080265
    Meksumpun S, Meksumpun C, Hoshika A, et al. 2005. Stable carbon and nitrogen isotope ratios of sediment in the gulf of Thailand: Evidence for understanding of marine environment. Continental Shelf Research, 25(15): 1905–1915. doi: 10.1016/j.csr.2005.04.009
    Meyers P A. 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology, 114(3–4): 289–302.
    Mohan M, Sreelakshmi U, Sagar M K V, et al. 2018. Rate of sediment accumulation and historic metal contamination in a tidewater glacier fjord, Svalbard. Marine Pollution Bulletin, 131: 453–459. doi: 10.1016/j.marpolbul.2018.04.057
    Moore H E, Poet S E, Martell E A. 1973. 222Rn, 210Pb, 210Bi, and 210Po profiles and aerosol residence times versus altitude. Journal of Geophysical Research, 78(30): 7065–7075. doi: 10.1029/JC078i030p07065
    Mottram R, Simonsen S B, Svendsen S H, et al. 2019. An integrated view of Greenland ice sheet mass changes based on models and satellite observations. Remote Sensing, 11(12): 1407. doi: 10.3390/rs11121407
    Naidu A S, Cooper L W, Finney B P, et al. 2000. Organic carbon isotope ratios (δ13C) of Arctic Amerasian continental shelf sediments. International Journal of Earth Sciences, 89(3): 522–532. doi: 10.1007/s005310000121
    Nilsen F, Skogseth R, Vaardal-Lunde J, et al. 2016. A simple shelf circulation model: intrusion of Atlantic water on the West Spitsbergen Shelf. Journal of Physical Oceanography, 46(4): 1209–1230. doi: 10.1175/jpo-d-15-0058.1
    Ogrinc N, Fontolan G, Faganeli J, et al. 2005. Carbon and nitrogen isotope compositions of organic matter in coastal marine sediments (the Gulf of Trieste, N Adriatic Sea): indicators of sources and preservation. Marine Chemistry, 95(3–4): 163–181,
    Paatero J, Hatakka J, Holmén K, et al. 2003. Lead-210 concentration in the air at Mt. Zeppelin, Ny-Ålesund, Svalbard. Physics and Chemistry of the Earth, Parts A/B/C, 28(28–32): 1175–1180,
    Pinglot J F, Hagen J O, Melvold K, et al. 2001. A mean net accumulation pattern derived from radioactive layers and radar soundings on Austfonna, Nordaustlandet, Svalbard. Journal of Glaciology, 47(159): 555–566. doi: 10.3189/172756501781831800
    Pinglot J F, Pourchet M, Lefauconnier B, et al. 1994. Natural and artificial radioactivity in the Svalbard Glaciers. Journal of Environmental Radioactivity, 25(1–2): 161–176,
    Pinglot J F, Vaikmäe R A, Kamiyama K, et al. 2003. Ice cores from Arctic sub-polar glaciers: chronology and post-depositional processes deduced from radioactivity measurements. Journal of Glaciology, 49(164): 149–158. doi: 10.3189/172756503781830944
    Promińska A, Małgorzata C, Waldemar W. 2017. Kongsfjorden and Hornsund hydrography-comparative study based on a multiyear survey in fjords of west Spitsbergen. Oceanologia, 59(4): 397–412. doi: 10.1016/j.oceano.2017.07.003
    Ruttenberg K C, Goñi M A. 1997. Phosphorus distribution, C: N: P ratios, and δ13Coc in Arctic, temperate, and tropical coastal sediments: tools for characterizing bulk sedimentary organic matter. Marine Geology, 139(1–4): 123–145,
    Saiers J E, Hornberger G M. 1996. The role of colloidal kaolinite in the transport of cesium through laboratory sand columns. Water Resources Research, 32(1): 33–41. doi: 10.1029/95wr03096
    Samuelsson C, Hallstadius L, Persson B, et al. 1986. 222Rn and 210Pb in the Arctic summer air. Journal of Environmental Radioactivity, 3(1): 35–54. doi: 10.1016/0265-931x(86)90048-2
    Sanchez-Cabeza J A, Ruiz-Fernández A C. 2012. 210Pb sediment radiochronology: an integrated formulation and classification of dating models. Geochimica et Cosmochimica Acta, 82: 183–200. doi: 10.1016/j.gca.2010.12.024
    Schellenberger T, Dunse T, Kääb A, et al. 2015. Surface speed and frontal ablation of Kronebreen and Kongsbreen, NW Svalbard, from SAR offset tracking. The Cryosphere, 9(6): 2339–2355. doi: 10.5194/tcd-8-6193-2014
    Schubert C J, Calvert S E. 2001. Nitrogen and carbon isotopic composition of marine and terrestrial organic matter in Arctic Ocean sediments: implications for nutrient utilization and organic matter composition. Deep-Sea Research Part I: Oceanographic Research Papers, 48(3): 789–810. doi: 10.1016/s0967-0637(00)00069-8
    Shi Fengdeng, Cheng Zhenbo, Wu Yonghua, et al. 2011. The research on glacial-marine deposit types and sedimentary processes in the Arctic Kongsfjorden. Haiyang Xuebao (in Chinese), 33(2): 115–123
    Svendsen H, Beszczynska-Møller A, Hagen J O, et al. 2002. The physical environment of Kongsfjorden-Krossfjorden, an Arctic fjord system in Svalbard. Polar Research, 21(1): 133–166. doi: 10.3402/polar.v21i1.6479
    Taylor J R, Thompson W. 1998. An introduction to error analysis: the study of uncertainties in physical measurements. Physics Today, 51(1): 57–58. doi: 10.1063/1.882103
    Thornton S F, McManus J. 1994. Application of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems: evidence from the Tay Estuary, Scotland. Estuarine, Coastal and Shelf Science, 38(3): 219–233,
    Usui T, Nagao S, Yamamoto M, et al. 2006. Distribution and sources of organic matter in surficial sediments on the shelf and slope off Tokachi, western North Pacific, inferred from C and N stable isotopes and C/N ratios. Marine Chemistry, 98(2–4): 241–259,
    Voss M, Liskow I, Pastuszak M, et al. 2005. Riverine discharge into a coastal bay: A stable isotope study in the Gulf of Gdańsk, Baltic Sea. Journal of Marine Systems, 57(1–2): 127–145,
    Walkusz W, Kwasniewski S, Falk-Petersen S, et al. 2009. Seasonal and spatial changes in the zooplankton community of Kongsfjorden, Svalbard. Polar Research, 28(2): 254–281. doi: 10.1111/j.1751-8369.2009.00107.x
    Wang Jinlong, Baskaran M, Niedermiller J. 2017. Mobility of 137Cs in freshwater lakes: a mass balance and diffusion study of Lake St. Clair, Southeast Michigan, USA. Geochimica et Cosmochimica Acta, 218: 323–342. doi: 10.1016/j.gca.2017.09.017
    Wickström S, Jonassen M O, Cassano J J, et al. 2020. Present temperature, precipitation, and rain-on-snow climate in Svalbard. Journal of Geophysical Research: Atmospheres, 125(14): e2019JD032155. doi: 10.1029/2019JD032155
    Winkelmann D, Knies J. 2005. Recent distribution and accumulation of organic carbon on the continental margin west off Spitsbergen. Geochemistry, Geophysics, Geosystems, 6(9): Q09012,
    Zaborska A, Pempkowiak J, Papucci C. 2006. Some sediment characteristics and sedimentation rates in an Arctic Fjord (Kongsfjorden, Svalbard). Środkowo-Pomorskie Towarzystwo Naukowe Ochrony Środowiska, 8: 79–96
    Zajaczkowski M. 2008. Sediment supply and fluxes in glacial and outwash fjords, Kongsfjorden and Adventfjorden, Svalbard. Polish Polar Research, 29(1): 59–72
    Zeng Sheng, Deng Binbin, Wang Jinlong, et al. 2022. Distribution of gamma-ray radionuclides in surface sediments of the Kongsfjorden, Arctic: implications for sediment provenance. Acta Oceanologica Sinica, 41(1): 21–29. doi: 10.1007/s13131-021-1916-x
    Zhang Fule, Wang Jinlong, Baskaran Mark, et al. 2021. A global dataset of atmospheric 7Be and 210Pb measurements: annual air concentration and depositional flux. Earth System Science Data, 13(6): 2963–2994. doi: 10.5194/essd-13-2963-2021
    Zhu Zhuoyi, Wu Ying, Liu Sumei, et al. 2016. Organic carbon flux and particulate organic matter composition in Arctic valley glaciers: examples from the Bayelva River and adjacent Kongsfjorden. Biogeosciences, 13(4): 975–987. doi: 10.5194/bg-13-975-2016
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (432) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return