Citation: | Ke Wang, Shikui Zhai, Zenghui Yu, Huaijing Zhang. Geochemical characteristics of Sr isotopes in the LS33 drill core from the Qiongdongnan Basin, South China Sea, and their response to the uplift of the Tibetan Plateau[J]. Acta Oceanologica Sinica, 2023, 42(5): 117-129. doi: 10.1007/s13131-022-2069-2 |
Bagherpour B, Bucher H, Schneebeli-Hermann E, et al. 2018. Early Late Permian coupled carbon and strontium isotope chemostratigraphy from South China: Extended Emeishan volcanism?. Gondwana Research, 58: 58–70. doi: 10.1016/j.gr.2018.01.011
|
Bi Dongjie, Zhang Daojun, Zhai Shikui, et al. 2017. The coupling relationships among the Qinghai-Tibet Plateau uplifting, the Qiongdongnan Basin subsiding and the Xisha Islands’ Reefs developing. Haiyang Xuebao (in Chinese), 39(1): 52–63
|
Bi Dongjie, Zhang Daojun, Zhai Shikui, et al. 2019. Seawater 87Sr/86Sr values recorded by reef carbonates from the Xisha Islands (South China Sea) since the Neogene and its response to the uplift of Qinghai-Tibetan Plateau. Geological Journal, 54(6): 3878–3890. doi: 10.1002/gj.3386
|
Briais A, Patriat P, Tapponnier P. 1993. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the Tertiary tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 98(B4): 6299–6328. doi: 10.1029/92JB02280
|
Cai Guofu, Shao Lei, Qiao Peijun, et al. 2013. Marine transgression and evolution of depositional environment in the Paleogene strata of Qiongdongnan Basin, South China Sea. Acta Petrolei Sinica (in Chinese), 34(S2): 91–101
|
Cao Licheng, Jiang Tao, Wang Zhenfeng, et al. 2013. Characteristics of heavy minerals and their implications for Neogene provenances evolution in Qiongdongnan Basin. Journal of Central South University (Science and Technology) (in Chinese), 44(5): 1971–1981
|
Chen Kui. 2012. Sediment source analysis of oil and gas objective strata in the Qiongdongnan Basin (in Chinese) [dissertation]. Qingdao: Ocean University of China
|
Chen Hongyan, Sun Zhipeng, Zhai Shikui, et al. 2015. Analysis of well-seismic stratigraphic correlation and establishment of regional stratigraphic framework in the Qiongdongnan Basin of northern South China Sea. Haiyang Xuebao (in Chinese), 37(5): 1–14
|
DePaolo D J. 1986. Detailed record of the Neogene Sr isotopic evolution of seawater from DSDP Site 590B. Geology, 14(2): 103–106. doi: 10.1130/0091-7613(1986)14<103:DROTNS>2.0.CO;2
|
Derry L A, Keto L S, Jacobsen S B, et al. 1989. Sr isotopic variations in Upper Proterozoic carbonates from Svalbard and East Greenland. Geochimica et Cosmochimica Acta, 53(9): 2331–2339. doi: 10.1016/0016-7037(89)90355-4
|
Du Tongjun. 2013. Sequence stratigraphic and deep water sedimentary characteristic in the Qiongdongnan Basin (in Chinese) [dissertation]. Qingdao: Ocean University of China
|
Edwards C T, Saltzman M R, Leslie S A, et al. 2015. Strontium isotope (87Sr/86Sr) stratigraphy of Ordovician bulk carbonate: Implications for preservation of primary seawater values. Geological Society of America Bulletin, 127(9–10): 1275–1289
|
Gong Chenglin, Wang Yingmin, Zhu Weilin, et al. 2011. The Central Submarine Canyon in the Qiongdongnan Basin, northwestern South China Sea: Architecture, sequence stratigraphy, and depositional processes. Marine and Petroleum Geology, 28(9): 1690–1702. doi: 10.1016/j.marpetgeo.2011.06.005
|
Harris N. 1995. Significance of weathering Himalayan metasedimentary rocks and leucogranites for the Sr isotope evolution of seawater during the early Miocene. Geology, 23(9): 795–798. doi: 10.1130/0091-7613(1995)023<0795:SOWHMR>2.3.CO;2
|
Holloway N H. 1982. North Palawan block, Philippines-its relation to Asian mainland and role in evolution of South China Sea. American Association of Petroleum Geologists Bulletin, 66(9): 1355–1383
|
Huang Wei, Wang Pinxian. 2006. Sediment mass and distribution in the South China Sea since the Oligocene. Science in China Series D: Earth Sciences, 49(11): 1147–1155. doi: 10.1007/s11430-006-2019-4
|
Hutchison C. 1989. Geological Evolution of Southeast Asia. Oxford: Clarendon Press
|
Jiang Xiaodian, Li Zhengxiang. 2014. Seismic reflection data support episodic and simultaneous growth of the Tibetan Plateau since 25 Myr. Nature Communications, 5: 5453,
|
Kaufman A J, Knoll A H. 1995. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications. Precambrian Research, 73(1–4): 27–49
|
Kroeger K F, Reuter M, Forst M H, et al. 2007. Eustasy and sea water Sr composition: application to high-resolution Sr-isotope stratigraphy of Miocene shallow-water carbonates. Sedimentology, 54(3): 565–585. doi: 10.1111/j.1365-3091.2006.00849.x
|
Le Guerroué E, Allen P A, Cozzi A. 2006. Chemostratigraphic and sedimentological framework of the largest negative carbon isotopic excursion in Earth history: The Neoproterozoic Shuram formation (Nafun Group, Oman). Precambrian Research, 146(1–2): 68–92
|
Lei Chao, Ren Jianye, Pei Jianxiang, et al. 2011. Tectonic framework and multiple episode tectonic evolution in deepwater area of Qiongdongnan Basin, northern continental margin of South China Sea. Earth Science-Journal of China University of Geosciences (in Chinese), 36(1): 151–162
|
Lei Chao, Ren Jianye, Zhang Jing. 2015. Tectonic province divisions in the South China Sea: implications for basin geodynamics. Earth Science-Journal of China University of Geosciences (in Chinese), 40(4): 744–762. doi: 10.3799/dqkx.2015.062
|
Li Tingdong. 1995. The uplifting process and mechanism of the Qinhai-Tibet Plateau. Acta Geoscientia Sinica (in Chinese), 16(1): 1–9
|
Li Na. 2013. The sedimentary paleoenvironment and provenance analysis in deepwater area of Qiongdongnan Basin since Oligocene (in Chinese) [dissertation]. Qingdao: Ocean University of China
|
Liu Xiaofeng. 2015. The evolution of sedimentary paleoenvironment and provenance in the deepwater area of the Qiongdongnan Basin (in Chinese) [Dissertation]. Qingdao: Ocean University of China
|
Liu Xiaofeng, Sun Zhipeng, Liu Xinyu, et al. 2018. Chronostratigraphic framework based on micro-paleontological data from drilling LS33a in deep water area of northern South China Sea. Acta Sedimentologica Sinica (in Chinese), 36(5): 890–902
|
Liu Xinyu, Xie Jinyou, Zhang Huolan, et al. 2009. Chronostratigraphy of planktonic foraminifera in the Yinggehai-Qiongdongnan Basin. Acta Micropalaeontologica Sinica (in Chinese), 26(2): 181–192
|
Liu Xiaofeng, Zhang Daojun, Zhai Shikui, et al. 2015. A heavy mineral viewpoint on sediment provenance and environment in the Qiongdongnan Basin. Acta Oceanologica Sinica, 34(4): 41–55. doi: 10.1007/s13131-015-0648-1
|
Luo Zhaohua, Mo Xuanxue, Hou Zengqian, et al. 2006. An integrated model for the Cenozoic evolution of the Tibetan Plateau: constraints from igneous rocks. Earth Science Frontiers (in Chinese), 13(4): 196–211
|
McArthur J M, Burnett J, Hancock J M. 1992. Strontium isotopes at K/T boundary. Nature, 355(6355): 28. doi: 10.1038/355028a0
|
Mi Lijun, Yuan Yusong, Zhang Gongcheng, et al. 2009. Characteristics and genesis of geothermal field in deep-water area of the northern South China Sea. Acta Petrolei Sinica (in Chinese), 30(1): 27–32
|
Milliman J D, Syvitski J P M. 1992. Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers. The Journal of Geology, 100(5): 525–544. doi: 10.1086/629606
|
Palmer M R, Edmond J M. 1989. The strontium isotope budget of the modern ocean. Earth & Planetary Science Letters, 92(1): 11–26
|
Palmer M R, Elderfield H. 1985. Sr isotope composition of sea water over the past 75 Myr. Nature, 314(6011): 526–528. doi: 10.1038/314526a0
|
Prokoph A, Shields G A, Veizer J. 2008. Compilation and time-series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history. Earth-Science Reviews, 87(3–4): 113–133
|
Rollinson H R. 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. New York: Longman Scientific Technical, 48–51
|
Ruppel S C, James E W, Barrick J E, et al. 1996. High-resolution 87Sr/86Sr chemostratigraphy of the Silurian: Implications for event correlation and strontium flux. Geology, 24(9): 831–834. doi: 10.1130/0091-7613(1996)024<0831:HRSSCO>2.3.CO;2
|
Shao Lei, Cui Yuchi, Qiao Peijun, et al. 2019. Implications on the Early Cenozoic palaeogeographical reconstruction of SE Eurasian margin based on northern South China Sea palaeo-drainage system evolution. Journal of Palaeogeography (in Chinese), 21(2): 216–231
|
Su Ming, Xie Xinong, Xie Yuhong, et al. 2014. The segmentations and the significances of the Central Canyon System in the Qiongdongnan Basin, northern South China Sea. Journal of Asian Earth Sciences, 79: 552–563. doi: 10.1016/j.jseaes.2012.12.038
|
Sun Zhiguo, Han Changfu, Ju Lianjun, et al. 1997. Comparison between the uplift of the Tibetan Plateau and the sedimentation of coral reefs in Xisha Islands. Marine Sciences (in Chinese), 24(4): 64–67
|
Sun Zhuan, Liu Hao, Wu Zhe. 2011. The analysis of Cenozoic tectonic sequence of Qiongdongnan Basin in the South China Sea. Offshore Oil (in Chinese), 31(1): 8–15
|
Tian Shanshan. 2010. Tectonic subsidence analysis and paleotopography restoration of postrifting strata in the Qiongdongnan Basin (in Chinese) [dissertation]. Wuhan: China University of Geosciences
|
van der Beek P, Van Melle J, Guillot S, et al. 2009. Eocene Tibetan plateau remnants preserved in the northwest Himalaya. Nature Geoscience, 2(5): 364–368. doi: 10.1038/ngeo503
|
van Hoang L, Wu Fuyuan, Clift P D, et al. 2009. Evaluating the evolution of the Red River system based on in situ U-Pb dating and Hf isotope analysis of zircons. Geochemistry, Geophysics, Geosystems, 10(11): Q11008
|
Wang Pinxian. 1995. ODP and Qinghai/Xizang (Tibetan) Palteau. Advance in Earth Sciences (in Chinese), 10(3): 254–257
|
Wang Guocan, Cao Kai, Zhang Kexin, et al. 2011a. Spatio-temporal framework of tectonic uplift stages of the Tibetan Plateau in Cenozoic. Science China Earth Sciences, 54(1): 29–44. doi: 10.1007/s11430-010-4110-0
|
Wang Xun, Liu Sheng’ao, Wang Zhengrong, et al. 2018. Zinc and strontium isotope evidence for climate cooling and constraints on the Frasnian-Famennian (~372 Ma) mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 498: 68–82
|
Wang Yingmin, Xu Qiang, Li Dong, et al. 2011b. Late Miocene Red River submarine fan, northwestern South China Sea. Chinese Science Bulletin, 56(14): 1488–1494. doi: 10.1007/s11434-011-4441-z
|
Wei Kuisheng, Cui Hanyun, Ye Shufen, et al. 2001. High-precision sequence stratigraphy in Qiongdongnan Basin. Earth Science-Journal of China University of Geosciences (in Chinese), 26(1): 59–66
|
Xie Xinong, Müller R D, Li Sitian, et al. 2006. Origin of anomalous subsidence along the northern South China Sea margin and its relationship to dynamic topography. Marine and Petroleum Geology, 23(7): 745–765. doi: 10.1016/j.marpetgeo.2006.03.004
|
Xiu Chun, Zhai Shikui, Huo Suxia, et al. 2018. Provenance of sediments of the Yacheng Formation in the Lingnan Low Uplift, Qiongdongnan Basin: Evidences from U-Pb dating of detrital zircons and geochemistry of the sediments. Bulletin of Mineralogy, Petrology and Geochemistry (in Chinese), 37(6): 1102–1113
|
Xu Qiang, Li Dong, Zhu Weilin, et al. 2020. Shrimp U-Pb ages of detrital zircons: Discussions on provenance control and the Red River capture event. Sedimentary Geology and Tethyan Geology (in Chinese), 40(3): 20–30
|
Xu Zhiqin, Yang Jingsui, Li Haibing, et al. 2011. On the tectonics of the India-Asia collision. Acta Geologica Sinica (in Chinese), 85(1): 1–33. doi: 10.1111/j.1755-6724.2011.00375.x
|
Yuan Shengqiang, Wu Shiguo, Yao Genshun. 2010. The controlling factors analysis of Qiongdongnan slope deepwater channels and its significance to the hydrocarbon exploration. Marine Geology and Quaternary Geology (in Chinese), 30(2): 61–66. doi: 10.3724/SP.J.1140.2010.02061
|
Zakharov Y D, Dril S I, Shigeta Y, et al. 2018. New aragonite 87Sr/86Sr records of Mesozoic ammonoids and approach to the problem of N, O, C and Sr isotope cycles in the evolution of the Earth. Sedimentary Geology, 364: 1–13. doi: 10.1016/j.sedgeo.2017.11.011
|
Zhong Dalai, Ding Lin. 1996. A discussion of the process and mechanism of Tibetan Plateau uplifting. Science in China Series D: Earth Sciences (in Chinese), 26(4): 289–295
|