Volume 42 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
Longyu Huang, Chenqing Fan, Junmin Meng, Jungang Yang, Jie Zhang. Shallow sea topography detection using fully polarimetric Gaofen-3 SAR data based on swell patterns[J]. Acta Oceanologica Sinica, 2023, 42(2): 150-162. doi: 10.1007/s13131-022-2063-8
Citation: Longyu Huang, Chenqing Fan, Junmin Meng, Jungang Yang, Jie Zhang. Shallow sea topography detection using fully polarimetric Gaofen-3 SAR data based on swell patterns[J]. Acta Oceanologica Sinica, 2023, 42(2): 150-162. doi: 10.1007/s13131-022-2063-8

Shallow sea topography detection using fully polarimetric Gaofen-3 SAR data based on swell patterns

doi: 10.1007/s13131-022-2063-8
Funds:  The National Natural Science Foundation of China under contract Nos 51839002 and U2006207.
More Information
  • Corresponding author: E-mail: mengjm@fio.org.cn
  • Received Date: 2021-11-12
  • Accepted Date: 2022-05-09
  • Available Online: 2022-08-12
  • Publish Date: 2023-02-25
  • Compared to single-polarization synthetic aperture radar (SAR) data, fully polarimetric SAR data can provide more detailed information of the sea surface, which is important for applications such as shallow sea topography detection. The Gaofen-3 satellite provides abundant polarimetric SAR data for ocean research. In this paper, a shallow sea topography detection method was proposed based on fully polarimetric Gaofen-3 SAR data. This method considers swell patterns and only requires SAR data and little prior knowledge of the water depth to detect shallow sea topography. Wave tracking was performed based on preprocessed fully polarimetric SAR data, and the water depth was then calculated considering the wave parameters and the linear dispersion relationships. In this paper, four study areas were selected for experiments, and the experimental results indicated that the polarimetric scattering parameter α had higher detection accuracy than quad-polarization images. The mean relative errors were 14.52%, 10.30%, 12.56%, and 12.90%, respectively, in the four study areas. In addition, this paper also analyzed the detection ability of this model for different topographies, and the experiments revealed that the topography could be well recognized when the topography gradient is small, the topography gradient direction is close to the wave propagation direction, and the isobath line is regular.
  • loading
  • Alpers W, Hennings I. 1984. A theory of the imaging mechanism of underwater bottom topography by real and synthetic aperture radar. Journal of Geophysical Research, 89(C6): 10529–10546. doi: 10.1029/JC089iC06p10529
    Beal R C, Tilley D G, Monaldo F M. 1983. Large-and small-scale spatial evolution of digitally processed ocean wave spectra from SEASAT synthetic aperture radar. Journal of Geophysical Research, 88(C3): 1761–1778. doi: 10.1029/JC088iC03p01761
    Bian Xiaolin, Shao Yun, Tian Wei, et al. 2016. Estimation of shallow water depth using HJ-1C S-band SAR data. The Journal of Navigation, 69(1): 113–126. doi: 10.1017/S0373463315000454
    Bian Xiaolin, Shao Yun, Wang Shiang, et al. 2018. Shallow water depth retrieval from multitemporal sentinel-1 SAR data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(9): 2991–3000. doi: 10.1109/JSTARS.2018.2851845
    Bian Xiaolin, Shao Yun, Zhang Chunyan, et al. 2020. The feasibility of assessing swell-based bathymetry using SAR imagery from orbiting satellites. ISPRS Journal of Photogrammetry and Remote Sensing, 168: 124–130. doi: 10.1016/j.isprsjprs.2020.08.006
    Boccia V, Renga A, Moccia A, et al. 2015a. Tracking of coastal swell fields in SAR images for sea depth retrieval: application to ALOS L-band data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(7): 3532–3540. doi: 10.1109/JSTARS.2015.2418273
    Boccia V, Renga A, Rufino G, et al. 2014. L-band SAR image processing for the determination of coastal bathymetry based on swell analysis. In: Proceedings of 2014 IEEE Geoscience and Remote Sensing Symposium. Quebec City, Canada: IEEE, 5144–5147. doi: 10.1109/IGARSS.2014.6947656
    Boccia V, Renga A, Rufino G, et al. 2015b. Linear dispersion relation and depth sensitivity to swell parameters: application to synthetic aperture radar imaging and bathymetry. The Scientific World Journal, 2015: 374579
    Bruck Sr M, Lehner S. 2013. Coastal wave field extraction using TerraSAR-X data. Journal of Applied Remote Sensing, 7(1): 073694. doi: 10.1117/1.JRS.7.073694
    Brusch S, Held P, Lehner S, et al. 2011. Underwater bottom topography in coastal areas from TerraSAR-X data. International Journal of Remote Sensing, 32(16): 4527–4543. doi: 10.1080/01431161.2010.489063
    Calkoen C J, Hesselmans G H F M, Wensink G J, et al. 2001. The Bathymetry Assessment System: efficient depth mapping in shallow seas using radar images. International Journal of Remote Sensing, 22(15): 2973–2998. doi: 10.1080/01431160116928
    Cloude S R, Pottier E. 1997. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Transactions on Geoscience and Remote Sensing, 35(1): 68–78. doi: 10.1109/36.551935
    Collard F, Ardhuin F, Chapron B. 2005. Extraction of coastal ocean wave fields from SAR images. IEEE Journal of Oceanic Engineering, 30(3): 526–533. doi: 10.1109/JOE.2005.857503
    Fan Kaiguo, Huang Weigen, He Mingxia, et al. 2008. Depth inversion in coastal water based on SAR image of waves. Chinese Journal of Oceanology and Limnology, 26(4): 434–439. doi: 10.1007/s00343-008-0434-4
    Hasselmann K, Raney R K, Plant W J, et al. 1985. Theory of synthetic aperture radar ocean imaging: A MARSEN view. Journal of Geophysical Research, 90(C3): 4659–4686. doi: 10.1029/JC090iC03p04659
    Huang Longyu, Yang Jungang, Meng Junmin, et al. 2021. Underwater topography detection and analysis of the Qilianyu Islands in the South China Sea based on GF-3 sar images. Remote Sensing, 13(1): 76. doi: 10.3390/rs13010076
    Jackson C R, Apel J R. 2004. Synthetic aperture radar marine user’s manual. Washington: U. S. Department of Commerce
    Kirby J T, Dalrymple K. 1986. An approximate model for nonlinear dispersion in monochromatic wave propagation models. Coastal Engineering, 9(6): 545–561. doi: 10.1016/0378-3839(86)90003-7
    Li Xiaoming, Lehner S, Rosenthal W. 2010a. Investigation of ocean surface wave refraction using TerraSAR-X Data. IEEE Transactions on Geoscience and Remote Sensing, 48(2): 830–840. doi: 10.1109/TGRS.2009.2033177
    Li Xiaofeng, Li Chunyan, Xu Qing, et al. 2009. Sea surface manifestation of along-tidal-channel underwater ridges imaged by SAR. IEEE Transactions on Geoscience and Remote Sensing, 47(8): 2467–2477. doi: 10.1109/TGRS.2009.2014154
    Li Xiaofeng, Yang Xiaofeng, Zheng Quanan, et al. 2010b. Deep-water bathymetric features imaged by spaceborne SAR in the Gulf Stream region. Geophysical Research Letters, 37(19): L19603. doi: 10.1029/2010GL044406
    Liu Genwang, Zhang Xi, Meng Junmin. 2019. A small ship target detection method based on polarimetric SAR. Remote Sensing, 11(24): 2938. doi: 10.3390/rs11242938
    Mishra M K, Ganguly D, Chauhan P, et al. 2014. Estimation of coastal bathymetry using RISAT-1 C-band microwave SAR data. IEEE Geoscience and Remote Sensing Letters, 11(3): 671–675. doi: 10.1109/LGRS.2013.2274475
    Misra A, Ramakrishnan B, Muslim A M. 2022. Synergistic utilization of optical and microwave satellite data for coastal bathymetry estimation. Geocarto International, 37(8): 2323–2345. doi: 10.1080/10106049.2020.1829100
    Pereira P, Baptista P, Cunha T, et al. 2019. Estimation of the nearshore bathymetry from high temporal resolution Sentinel-1A C-band SAR data—A case study. Remote Sensing of Environment, 223: 166–178. doi: 10.1016/j.rse.2019.01.003
    Pleskachevsky A, Lehner S, Heege T, et al. 2011. Synergy and fusion of optical and synthetic aperture radar satellite data for underwater topography estimation in coastal areas. Ocean Dynamics, 61(12): 2099–2120. doi: 10.1007/s10236-011-0460-1
    Qi Yali. 2009. A relevance feedback retrieval method based on Tamura texture. In: Proceedings of the 2009 Second International Symposium on Knowledge Acquisition and Modeling. Wuhan: IEEE, 174–177
    Romeiser R, Alpers W. 1997. An improved composite surface model for the radar backscattering cross section of the ocean surface: 2. Model response to surface roughness variations and the radar imaging of underwater bottom topography. Journal of Geophysical Research, 102(C11): 25251–25267. doi: 10.1029/97JC00191
    Santos D, Abreu T, Silva P A, et al. 2020. Estimation of coastal bathymetry using wavelets. Journal of Marine Science and Engineering, 8(10): 772. doi: 10.3390/jmse8100772
    Santos D, Fernández-Fernández S, Abreu T, et al. 2022. Retrieval of nearshore bathymetry from Sentinel-1 SAR data in high energetic wave coasts: the Portuguese case study. Remote Sensing Applications: Society and Environment, 25: 100674. doi: 10.1016/j.rsase.2021.100674
    Schuler D L, Lee J S, Kasilingam D, et al. 2004. Measurement of ocean surface slopes and wave spectra using polarimetric SAR image data. Remote Sensing of Environment, 91(2): 198–211. doi: 10.1016/j.rse.2004.03.008
    Schuler D L, Lee J S, Pottier E, et al. 2005. Comparison of polarimetric SAR techniques for the measurement of directional ocean wave spectra. In: Proceedings of 2005 IEEE International Geoscience and Remote Sensing Symposium. Seoul: IEEE, 4
    Shen Simin, Zhu Shouxian, Kang Yanyan, et al. 2019. Simulation analysis for remote sensing inversion of wavelength and water depth by the Fast Fourier Transform method. Journal of East China Normal University (Natural Science), 2019(2): 189–194, 208
    Shu Sijing, Meng Junmin, Zhang Xi, et al. 2020. Experimental study of C-band microwave scattering characteristics during the emulsification process of oil spills. Acta Oceanologica Sinica, 39(7): 135–145. doi: 10.1007/s13131-020-1612-4
    Tozer B, Sandwell D T, Smith W H F, et al. 2019. Global bathymetry and topography at 15 Arc Sec: SRTM15+. Earth and Space Science, 6(10): 1847–1864. doi: 10.1029/2019EA000658
    Weatherall P, Tozer B, Arndt J E, et al. 2021. The GEBCO_2021 Grid - a continuous terrain model of the global oceans and land. Liverpool: NERC EDS British Oceanographic Data Centre NOC
    Zhang Xi, Dierking W, Zhang Jie, et al. 2015. Retrieval of the thickness of undeformed sea ice from C-band compact polarimetric SAR images. The Cryosphere Discussions, 9(5): 5445–5483
    Zhang Hao, Meng Junmin, Sun Lina, et al. 2020. Performance analysis of internal solitary wave detection and identification based on compact polarimetric SAR. IEEE Access, 8: 172839–172847. doi: 10.1109/ACCESS.2020.3025946
    Zhao Wei, Zhou Guoqing, Yue Tao, et al. 2013. Retrieval of ocean wavelength and wave direction from sar image based on radon transform. In: Proceedings of 2013 IEEE International Geoscience and Remote Sensing Symposium. Melbourne: IEEE, 1513–1516
    Zheng Quanan, Holt B, Li Xiaofeng, et al. 2012. Deep-water seamount wakes on SEASAT SAR image in the Gulf Stream region. Geophysical Research Letters, 39(16): L16604. doi: 10.1029/2012GL052661
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (856) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return