Citation: | Xudong Zhang, Xiaofeng Li. Oceanic internal waves generated by the Tongan volcano eruption[J]. Acta Oceanologica Sinica, 2022, 41(8): 1-4. doi: 10.1007/s13131-022-2056-7 |
[1] |
Alford M H, Peacock T, MacKinnon J A, et al. 2015. The formation and fate of internal waves in the South China Sea. Nature, 521(7550): 65–69. doi: 10.1038/nature14399
|
[2] |
Alpers W. 1985. Theory of radar imaging of internal waves. Nature, 314(6008): 245–247. doi: 10.1038/314245a0
|
[3] |
Apel J R, Byrne H M, Proni J R, et al. 1976. A study of oceanic internal waves using satellite imagery and ship data. Remote Sensing of Environment, 5: 125–135. doi: 10.1016/0034-4257(76)90043-2
|
[4] |
Du Hui, Wei Gang, Wang Shaodong, et al. 2019. Experimental study of elevation- and depression-type internal solitary waves generated by gravity collapse. Physics of Fluids, 31(10): 102104. doi: 10.1063/1.5121556
|
[5] |
Jackson C R, da Silva J C B, Jeans G. 2012. The generation of nonlinear internal waves. Oceanography, 25(2): 108–123. doi: 10.5670/oceanog.2012.46
|
[6] |
Li Xiaofeng, Zhao Zhongxiang, Pichel W G. 2008. Internal solitary waves in the northwestern South China Sea inferred from satellite images. Geophysical Research Letters, 35(13): L13605. doi: 10.1029/2008GL034272
|
[7] |
Lindsey D T, Nam S, Miller S D. 2018. Tracking oceanic nonlinear internal waves in the Indonesian seas from geostationary orbit. Remote Sensing of Environment, 208: 202–209. doi: 10.1016/j.rse.2018.02.018
|
[8] |
Liu Antony K, Su Feng-Chun, Hsu Ming-Kuang, et al. 2013. Generation and evolution of mode-two internal waves in the South China Sea. Continental Shelf Research, 59: 18–27. doi: 10.1016/j.csr.2013.02.009
|
[9] |
Nakashima Y, Heki K, Takeo A, et al. 2016. Atmospheric resonant oscillations by the 2014 eruption of the Kelud volcano, Indonesia, observed with the ionospheric total electron contents and seismic signals. Earth and Planetary Science Letters, 434: 112–116. doi: 10.1016/j.jpgl.2015.11.029
|
[10] |
Whalen C B, de Lavergne C, Naveira Garabato A C, et al. 2020. Internal wave-driven mixing: governing processes and consequences for climate. Nature Reviews Earth & Environment, 1(11): 606–621
|
[11] |
Witze A. 2022. Why the Tongan eruption will go down in the history of volcanology. Nature, 602(7897): 376–378. doi: 10.1038/d41586-022-00394-y
|
[12] |
Wyatt A S J, Leichter J J, Toth L T, et al. 2019. Heat accumulation on coral reefs mitigated by internal waves. Nature Geoscience, 13(1): 28–34
|
[13] |
Xie Huarong, Xu Qing, Zheng Quanan, et al. 2022. Assessment of theoretical approaches to derivation of internal solitary wave parameters from multi-satellite images near the Dongsha Atoll of the South China Sea. Acta Oceanologica Sinica, 41(6): 137–145. doi: 10.1007/s13131-022-2015-3
|
[14] |
Zhang Xudong, Wang Haoyu, Wang Shuo, et al. 2022. Oceanic internal wave amplitude retrieval from satellite images based on a data-driven transfer learning model. Remote Sensing of Environment, 272: 112940. doi: 10.1016/j.rse.2022.112940
|
[15] |
Zhao Zhongxiang, Alford M H. 2006. Source and propagation of internal solitary waves in the northeastern South China Sea. Journal of Geophysical Research: Oceans, 111(C11): C11012. doi: 10.1029/2006JC003644
|
[16] |
Zheng Quanan, Susanto R D, Ho Chung-Ru, et al. 2007. Statistical and dynamical analyses of generation mechanisms of solitary internal waves in the northern South China Sea. Journal of Geophysical Research: Oceans, 112(C3): C03021
|
[17] |
Zheng Quanan, Yuan Yeli, Klemas V, et al. 2001. Theoretical expression for an ocean internal soliton synthetic aperture radar image and determination of the soliton characteristic half width. Journal of Geophysical Research: Oceans, 106(C12): 31415–31423. doi: 10.1029/2000JC000726
|