Volume 41 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
Jian Zheng, Tianxiang Gao, Yunrong Yan, Na Song. Genetic variation of the small yellow croaker (Larimichthys polyactis) inferred from mitochondrial DNA provides novel insight into the fluctuation of resources[J]. Acta Oceanologica Sinica, 2022, 41(11): 88-95. doi: 10.1007/s13131-022-2039-8
Citation: Jian Zheng, Tianxiang Gao, Yunrong Yan, Na Song. Genetic variation of the small yellow croaker (Larimichthys polyactis) inferred from mitochondrial DNA provides novel insight into the fluctuation of resources[J]. Acta Oceanologica Sinica, 2022, 41(11): 88-95. doi: 10.1007/s13131-022-2039-8

Genetic variation of the small yellow croaker (Larimichthys polyactis) inferred from mitochondrial DNA provides novel insight into the fluctuation of resources

doi: 10.1007/s13131-022-2039-8
Funds:  The National Key Research and Development Program of China under contract No. 2018YFD0900905.
More Information
  • Corresponding author: E-mail: songna624@163.com
  • Received Date: 2021-12-15
  • Accepted Date: 2022-02-28
  • Available Online: 2022-10-08
  • Publish Date: 2022-11-01
  • The small yellow croaker (Larimichthys polyactis) belongs to the family Sciaenidae, which is an offshore warm fish species and widely distributed in the western Pacific. In this study, the variation of genetic diversity and genetic differentiation among L. polyactis populations was analyzed by mitochondrial DNA control region. A total of 110 polymorphic sites were checked, which defined 134 haplotypes. High level of haplotype diversity (h=0.993±0.002) was detected in the examined range. Population genetic structure analyse (analysis of molecular variance, Fst) showed there were high gene flow among L. polyactis populations. The result showed that there were relatively high genetic diversity and low genetic differentiation among the Yellow Sea and the East China Sea populations, which can be attributed to diverse habitats, wide distribution range and high mutation rate of control region. Using phylogenetic methods, coalescent analyses (neutrality tests, mismatch distribution analysis, Bayesian skyline analyses) and molecular dating interpreted in conjunction with paleoclimatic and physiographic evidence, we inferred that the genetic make-up of extant populations of L. polyactis was shaped by Pleistocene environmental impacts on the historical demography of this species. Besides, relatively constant genetic diversity and larger effective population size were detected in recent L. polyactis population. The result showed that the fishing policy certainly, such as the summer closed fishing, played a role in protecting resources of L. polyactis. This study can offer a wealth of biological novelties which indicates genetic structure of L. polyactis population and provides the foundation for resources protection and policy setting.
  • loading
  • Bouckaert R, Heled J, Kühnert D, et al. 2014. BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 10(4): e1003537. doi: 10.1371/journal.pcbi.1003537
    Chen Yongjun, Mao Jun, Senanan W, et al. 2020. Identification of a large dataset of SNPs in Larimichthys polyactis using high-throughput 2b-RAD sequencing. Animal Genetics, 51(6): 964–967. doi: 10.1111/age.13000
    Chen Zuozhi, Xu Shannan, Qiu Yongsong, et al. 2009. Modeling the effects of fishery management and marine protected areas on the Beibu Gulf using spatial ecosystem simulation. Fisheries Research, 100(3): 222–229. doi: 10.1016/j.fishres.2009.08.001
    Cheng Jiahua, Lin Longshan, Ling Jianzhong, et al. 2004. Effects of summer close season and rational utilization on redlip croaker (Larimichthys polyactis Bleeker) resource in the East China Sea Region. Journal of Fishery Sciences of China, 11(6): 554–560
    Dann T H, Habicht C, Baker T T, et al. 2013. Exploiting genetic diversity to balance conservation and harvest of migratory salmon. Canadian Journal of Fisheries and Aquatic Sciences, 70(5): 785–793. doi: 10.1139/cjfas-2012-0449
    Excoffier L, Laval G, Schneider S. 2007. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1: 47–50
    Excoffier L, Smouse P E, Quattro J M. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics, 131(2): 479–491. doi: 10.1093/genetics/131.2.479
    Felsenstein J, Kuhner M K, Yamato J, et al. 1999. Likelihoods on coalescents: a Monte Carlo sampling approach to inferring parameters from population samples of molecular data. Lecture Notes-Monograph Series, 33: 163–185
    Fu Yunxin. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147(2): 915–925. doi: 10.1093/genetics/147.2.915
    Gao Tianxiang, Ying Yiping, Yang Qiaoli, et al. 2020. The mitochondrial markers provide new insights into the population demographic history of Coilia nasus with two ecotypes (anadromous and freshwater). Frontiers in Marine Science, 7: 576161. doi: 10.3389/fmars.2020.576161
    Giovannoni S J, Britschgi T B, Moyer C L, et al. 1990. Genetic diversity in Sargasso Sea bacterioplankton. Nature, 345(6270): 60–63. doi: 10.1038/345060a0
    Glenn T C, Stephan W, Braun M J. 1999. Effects of a population bottleneck on whooping crane mitochondrial DNA variation. Conservation Biology, 13(5): 1097–1107. doi: 10.1046/j.1523-1739.1999.97527.x
    Han Zhiqiang, Lin Longshan, Shui Bonian, et al. 2009. Genetic diversity of small yellow croaker Larimichthys polyactis revealed by AFLP markers. African Journal of Agricultural Research, 4(7): 605–610
    Han Qingpeng, Shan Xiujuan, Wan Rong, et al. 2019. Spatiotemporal distribution and the estimated abundance indices of Larimichthys polyactis in winter in the Yellow Sea based on geostatistical delta-generalized linear mixed models. Journal of Fisheries of China, 43(7): 1603–1614
    Herbert T D, Schuffert J D, Andreasen D, et al. 2001. Collapse of the California current during glacial maxima linked to climate change on land. Science, 293(5527): 71–76. doi: 10.1126/science.1059209
    Huang Hao. 2011. Morphological variation and genetic diversity of five populations of small yellow croaker (Larimichthys polyactis)(in Chinese)[dissertation]. Wuxi: Nanjing Agricultural University
    Ikeda I. 1964. Studies on the fisheries biology of the yellow croaker in the East China and the Yellow Seas. Seikai Reg Fish Resource Library, 31: 1–81
    Ishikawa S, Aoyama J, Tsukamoto K, et al. 2001. Population structure of the Japanese eel Anguilla japonica as examined by mitochondrial DNA sequencing. Fisheries Science, 67(2): 246–253. doi: 10.1046/j.1444-2906.2001.00227.x
    Kim J K, Kim Y H, Kim M J, et al. 2010. Genetic diversity, relationships and demographic history of the small yellow croaker, Larimichthys polyactis (Pisces: Sciaenidae) from Korea and China inferred from mitochondrial control region sequence data. Animal Cells & Systems, 14(1): 45–51
    Kim Y H, Lee S K, Lee J B, et al. 2006. Age and growth of small yellow croaker, Larimichthys polyactis in the South Sea of Korea. Korean Journal of Ichthyology, 18(1): 45–54
    Kim J K, Min G S, Yoon M, et al. 2012. Genetic structure of Larimichthys polyactis (Pisces: Sciaenidae) in the Yellow and East China Seas inferred from microsatellite and mitochondrial DNA analyses. Animal Cells and Systems, 16(4): 313–320. doi: 10.1080/19768354.2011.652668
    Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2): 111–120. doi: 10.1007/BF01731581
    Kuhner M K. 2006. LAMARC 2.0: maximum likelihood and Bayesian estimation of population parameters. Bioinformatics, 22(6): 768–770. doi: 10.1093/bioinformatics/btk051
    Li Yuan, Han Zhiqiang, Song Na, et al. 2013. New evidence to genetic analysis of small yellow croaker (Larimichthys polyactis) with continuous distribution in China. Biochemical Systematics and Ecology, 50: 331–338. doi: 10.1016/j.bse.2013.05.003
    Librado P, Rozas J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11): 1451–1452. doi: 10.1093/bioinformatics/btp187
    Lin Longshan, Cheng Jiaye. 2004. An analysis of the current situation of fishery biology of small yellow croaker in the East China Sea. Periodical of Ocean University of China, 34(4): 565–570
    Lin Longshan, Cheng Jiaye, Jiang Yazhou, et al. 2008. Spatial distribution and environmental characteristics of the spawning grounds of small yellow croaker in the southern Yellow Sea and the East China Sea. Acta Ecologica Sinica, 28(8): 3485–3494
    Lin Longshan, Jiang Yazhou, Liu Zunlei, et al. 2010. Analysis of the distribution difference of small yellow croaker between the southern Yellow Sea and the East China Sea. Periodical of Ocean University of China, 40(3): 1–6
    Lin Longshan, Jiang Yazhou, Yan Liping, et al. 2009. Study on the distribution characteristics and fecundity of spawning stock of Larimichthys polyactis in the southern Yellow Sea and the East China Sea. Journal of Shanghai Ocean University, 18(4): 453–459
    Lin Longshan, Liu Zunlei, Jiang Yazhou. 2011. Current status of small yellow croaker resources in the southern Yellow Sea and the East China Sea. Chinese Journal of Oceanology and Limnology, 29(3): 547–555. doi: 10.1007/s00343-011-0182-8
    Meng Zining, Zhuang Zhimeng, Jin Xianshi, et al. 2003. Genetic diversity in small yellow croaker (Pseudosciaena polyactis) by RAPD analysis. Biodiversity Science, 11(3): 197–203. doi: 10.17520/biods.2003026
    Moritz C, Dowling T E, Brown W M. 1987. Evolution of animal mitochondrial DNA: Relevance for population biology and systematics. Annual Review of Ecology and Systematics, 18: 269–292. doi: 10.1146/annurev.es.18.110187.001413
    Nei M. 1987. Molecular Evolutionary Genetics. New York: Columbia University Press
    Palumbi S R. 1994. Genetic divergence, reproductive isolation, and marine speciation. Annual Review of Ecology and Systematics, 25(1): 547–572. doi: 10.1146/annurev.es.25.110194.002555
    Rambaut A, Drummond A J, Xie Dong, et al. 2018. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Systematic Biology, 67(5): 901–904. doi: 10.1093/sysbio/syy032
    Rogers A R, Harpending H. 1992. Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution, 9(3): 552–569
    Sambrook J, Fritsch E F, Maniatis T. 1989. Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press
    Shan Binbin, Liu Yan, Song Na, et al. 2020. Genetic diversity and population structure of black sea bream (Acanthopagrus schlegelii) based on mitochondrial control region sequences: the genetic effect of stock enhancement. Regional Studies in Marine Science, 35: 101188. doi: 10.1016/j.rsma.2020.101188
    Simons A M, Wood R M, Heath L S, et al. 2001. Phylogenetics of Scaphirhynchus based on mitochondrial DNA sequences. Transactions of the American Fisheries Society, 130(3): 359–366. doi: 10.1577/1548-8659(2001)130<0359:POSBOM>2.0.CO;2
    Slatkin M, Hudson R R. 1991. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics, 129(2): 555–562. doi: 10.1093/genetics/129.2.555
    Song Na, Ma Guoqiang, Zhang Xiumei, et al. 2014. Genetic structure and historical demography of Collichthys lucidus inferred from mtDNA sequence analysis. Environmental Biology of Fishes, 97(1): 69–77. doi: 10.1007/s10641-013-0124-8
    Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123(3): 585–595. doi: 10.1093/genetics/123.3.585
    Tamura K, Peterson D, Peterson N, et al. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10): 2731–2739. doi: 10.1093/molbev/msr121
    Tang Jianhua, Zhou Jin. 1999. Resource and management of the small yellow croaker in the East China Sea. Marine Fisheries, 21(4): 173–174,180
    Teacher A G, André C, Jonsson P R, et al. 2013. Oceanographic connectivity and environmental correlates of genetic structuring in Atlantic herring in the Baltic Sea. Evolutionary Applications, 6(3): 549–567. doi: 10.1111/eva.12042
    Tokuyama T, Shy J Y, Lin Huichen, et al. 2020. Genetic population structure of the fiddler crab Austruca lactea (De Haan, 1835) based on mitochondrial DNA control region sequences. Crustacean Research, 49: 141–153. doi: 10.18353/crustacea.49.0_141
    Wang Yali, Hu Cuilin, Li Zhenhua, et al. 2021. Population structure and resource change of Larimichthys polyactis in spring in Zhoushan fishery spawning ground protection area, China. Chinese Journal of Applied Ecology, 32(9): 3349–3356
    Weir B S, Cockerham C C. 1984. Estimating F-statistics for the analysis of population structure. Evolution, 38(6): 1358–1370
    Wirgin I, Waldman J R, Rosko J, et al. 2000. Genetic structure of Atlantic sturgeon populations based on mitochondrial DNA control region sequences. Transactions of the American Fisheries Society, 129(2): 476–486. doi: 10.1577/1548-8659(2000)129<0476:GSOASP>2.0.CO;2
    Wu Renxie, Liu Shufang, Zhuang Zhimeng, et al. 2012. Population genetic structure and demographic history of small yellow croaker, Larimichthys polyactis (Bleeker, 1877), from coastal waters of China. African Journal of Biotechnology, 11(61): 12500–12509
    Xiao Yongshuang, Song Na, Li Jun, et al. 2015. Significant population genetic structure detected in the small yellow croaker Larimichthys polyactis inferred from mitochondrial control region. Mitochondrial DNA, 26(3): 409–419. doi: 10.3109/19401736.2013.843076
    Xiao Yongshuang, Zhang Xiumei, Gao Tianxiang, et al. 2009. Genetic diversity in the mtDNA control region and population structure in the small yellow croaker Larimichthys polyactis. Environmental Biology of Fishes, 85(4): 303–314. doi: 10.1007/s10641-009-9497-0
    Xu Zhaoli, Cheng Jiajie. 2009. Analysis on migratory routine of Larimichthy polyactis. Journal of Fishery Sciences of China, 16(6): 931–940
    Yan Liping, Liu Zunlei, Jin Yan, et al. 2019. Effects of prolonging the trawl net summer fishing moratorium period in the East China Sea on the conservation of fishery resources. Journal of Fishery Sciences of China, 26(1): 118–123. doi: 10.3724/SP.J.1118.2019.18243
    Zhang Hanye, Cheng Jiahua. 2005. Geostatistical analysis on spatial patterns of small yellow croaker (Larimichthys polyactis) in the East China Sea. Journal of Fishery Sciences of China, 12(4): 419–423
    Zhang Jian, Jin Yufeng, Peng Yongzhang. 2014. On construction improvement in net mouth of traditional stow net. Marine Fisheries, 36(1): 63–67
    Zhang Baidong, Xue Dongxiu, Wang Juan, et al. 2016. Development and preliminary evaluation of a genomewide single nucleotide polymorphisms resource generated by RAD-seq for the small yellow croaker (Larimichthys polyactis). Molecular Ecology Resources, 16(3): 755–768. doi: 10.1111/1755-0998.12476
    Zheng Xuebin, Du Chen, Wang Jingqian, et al. 2020. Physiological characteristics and cryopreservation effect of Larimichthys polyactis sperm. Oceanologia et Limnologia Sinica, 51(1): 193–205
    Zheng Wenjuan, Lai Yuhong, You Xinyu, et al. 2012. Genetic diversity of Pseudosciaena polyactis in Zhoushan based on mitochondrial DNA D-loop region sequences. Zoological Research, 33(3): 329–336
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article views (440) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return