Citation: | Yanpei Zhuang, Yangjie Li, Xizhen Liu, Shichao Tian, Bin Wang, Zhongqiang Ji, Haiyan Jin, Jianfang Chen. Application of an optical nitrate profiler to high- and low-turbidity coastal shelf waters[J]. Acta Oceanologica Sinica, 2023, 42(1): 103-108. doi: 10.1007/s13131-022-2038-9 |
Bauer J E, Cai Weijun, Raymond P A, et al. 2013. The changing carbon cycle of the coastal ocean. Nature, 504(7478): 61–70. doi: 10.1038/nature12857
|
Chen Fajin, Chen Jianfang, Jia Guodong, et al. 2013. Nitrate δ15N and δ18O evidence for active biological transformation in the Changjiang Estuary and the adjacent East China Sea. Acta Oceanologica Sinica, 32(4): 11–17. doi: 10.1007/s13131-013-0294-4
|
Chen Chen-Tung Arthur, Wang Shulun. 1999. Carbon, alkalinity and nutrient budgets on the East China Sea continental shelf. Journal of Geophysical Research: Oceans, 104(C9): 20675–20686. doi: 10.1029/1999JC900055
|
Chen Fajin, Zhou Xin, Lao Qibin, et al. 2019. Dual isotopic evidence for nitrate sources and active biological transformation in the northern South China Sea in summer. PLoS ONE, 14(1): e0209287. doi: 10.1371/journal.pone.0209287
|
Cloern J E. 2001. Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series, 210: 223–253. doi: 10.3354/meps210223
|
Finch M S, Hydes D J, Clayson C H, et al. 1998. A low power ultra violet spectrophotometer for measurement of nitrate in seawater: introduction, calibration and initial sea trials. Analytica Chimica Acta, 377(2–3): 167–177
|
Grasshoff K, Kremling K, Ehrhardt M. 2009. Methods of Seawater Analysis. New York: John Wiley & Sons
|
Guo Weidong, Stedmon C A, Han Yuchao, et al. 2007. The conservative and non-conservative behavior of chromophoric dissolved organic matter in Chinese estuarine waters. Marine Chemistry, 107(3): 357–366. doi: 10.1016/j.marchem.2007.03.006
|
Guo Weidong, Yang Liyang, Zhai Weidong, et al. 2014. Runoff-mediated seasonal oscillation in the dynamics of dissolved organic matter in different branches of a large bifurcated estuary—The Changjiang Estuary. Journal of Geophysical Research: Biogeosciences, 119(5): 776–793. doi: 10.1002/2013JG002540
|
Johnson K S. 2010. Simultaneous measurements of nitrate, oxygen, and carbon dioxide on oceanographic moorings: Observing the Redfield ratio in real time. Limnology and Oceanography, 55(2): 615–627. doi: 10.4319/lo.2010.55.2.0615
|
Johnson K S, Barry J P, Coletti L J, et al. 2011. Nitrate and oxygen flux across the sediment-water interface observed by eddy correlation measurements on the open continental shelf. Limnology and Oceanography: Methods, 9(11): 543–553. doi: 10.4319/lom.2011.9.543
|
Johnson K S, Coletti L J. 2002. In situ ultraviolet spectrophotometry for high resolution and long-term monitoring of nitrate, bromide and bisulfide in the ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 49(7): 1291–1305. doi: 10.1016/S0967-0637(02)00020-1
|
Johnson K S, Coletti L J, Chavez F P. 2006. Diel nitrate cycles observed with in situ sensors predict monthly and annual new production. Deep-Sea Research Part I: Oceanographic Research Papers, 53(3): 561–573. doi: 10.1016/j.dsr.2005.12.004
|
Johnson K S, Coletti L J, Jannasch H W, et al. 2013. Long-term nitrate measurements in the ocean using the in situ ultraviolet spectrophotometer: sensor integration into the APEX profiling float. Journal of Atmospheric & Oceanic Technology, 30(8): 1854–1866
|
Johnson K S, Needoba J A. 2008. Mapping the spatial variability of plankton metabolism using nitrate and oxygen sensors on an autonomous underwater vehicle. Limnology and Oceanography, 53: 2237–2250. doi: 10.4319/lo.2008.53.5_part_2.2237
|
Johnson K S, Plant J N, Dunne J P, et al. 2017. Annual nitrate drawdown observed by SOCCOM profiling floats and the relationship to annual net community production. Journal of Geophysical Research: Oceans, 122(8): 6668–6683. doi: 10.1002/2017JC012839
|
Johnson K S, Riser S C, Karl D M. 2010. Nitrate supply from deep to near-surface waters of the North Pacific subtropical gyre. Nature, 465(7301): 1062–1065. doi: 10.1038/nature09170
|
Kaplunenko D D, Lobanov V B, Tishchenko P Y, et al. 2013. Nitrate in situ measurements in the northern Japan Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 86–87: 10–18
|
Khandelwal A, González-Pinzón R, Regier P, et al. 2020. Introducing the self-cleaning filtration for water quality sensors (SC-FLAWLeSS) system. Limnology and Oceanography: Methods, 18(9): 467–476. doi: 10.1002/lom3.10377
|
Li Yangjie, Jin Haiyan, Chen Jianfang, et al. 2021. Nitrogen removal through sediment denitrification in the Yangtze Estuary and its adjacent East China Sea: A nitrate limited process during summertime. Science of the Total Environment, 795: 148616. doi: 10.1016/j.scitotenv.2021.148616
|
Liu Sumei, Qi Xiaohong, Li Xiaona, et al. 2016. Nutrient dynamics from the Changjiang (Yangtze River) Estuary to the East China Sea. Journal of Marine Systems, 154: 15–27. doi: 10.1016/j.jmarsys.2015.05.010
|
Liu J P, Xu K H, Li A C, et al. 2007. Flux and fate of Yangtze River sediment delivered to the East China Sea. Geomorphology, 85(3–4): 208–224
|
MacIntyre G, Plache B, Lewis M R, et al. 2009. ISUS/SUNA nitrate measurements in networked ocean observing systems. In: OCEANS 2009. Biloxi, MS, USA: IEEE, 1–7
|
Mao Zhihua, Chen Jianyu, Pan Delu, et al. 2012. A regional remote sensing algorithm for total suspended matter in the East China Sea. Remote Sensing of Environment, 124: 819–831. doi: 10.1016/j.rse.2012.06.014
|
Meyer D, Prien R D, Rautmann L, et al. 2018. In situ determination of nitrate and hydrogen sulfide in the Baltic Sea using an ultraviolet spectrophotometer. Frontiers in Marine Science, 5: 431. doi: 10.3389/fmars.2018.00431
|
Pellerin B A, Bergamaschi B A, Gilliom R J, et al. 2014. Mississippi River nitrate loads from high frequency sensor measurements and regression-based load estimation. Environmental Science & Technology, 48(21): 12612–12619
|
Pidcock R, Srokosz M, Allen J, et al. 2010. A novel integration of an ultraviolet nitrate sensor on board a towed vehicle for mapping open-ocean submesoscale nitrate variability. Journal of Atmospheric & Oceanic Technology, 27(8): 1410–1416
|
Prien R D. 2007. The future of chemical in situ sensors. Marine Chemistry, 107(3): 422–432. doi: 10.1016/j.marchem.2007.01.014
|
Randelhoff A, Guthrie J D. 2016. Regional patterns in current and future export production in the central Arctic Ocean quantified from nitrate fluxes. Geophysical Research Letters, 43(16): 8600–8608. doi: 10.1002/2016GL070252
|
Rönnberg C, Bonsdorff E. 2004. Baltic Sea eutrophication: area-specific ecological consequences. Hydrobiologia, 514(1–3): 227–241
|
Sakamoto C M, Johnson K S, Coletti L J. 2009. Improved algorithm for the computation of nitrate concentrations in seawater using an in situ ultraviolet spectrophotometer. Limnology and Oceanography: Methods, 7(1): 132–143. doi: 10.4319/lom.2009.7.132
|
Sakamoto C M, Johnson K S, Coletti L J, et al. 2017. Pressure correction for the computation of nitrate concentrations in seawater using an in situ ultraviolet spectrophotometer. Limnology and Oceanography: Methods, 15(10): 897–902. doi: 10.1002/lom3.10209
|
Schlitzer R. 2018. Ocean Data View. http://odv.awi.de[2018-04-04/2019-12-03]
|
Wang Bin, Chen Jianfang, Jin Haiyan, et al. 2017. Diatom bloom-derived bottom water hypoxia off the Changjiang Estuary, with and without typhoon influence. Limnology and Oceanography, 62(4): 1552–1569. doi: 10.1002/lno.10517
|
Wang Baodong, Wang Xiulin, Zhan Run. 2003. Nutrient conditions in the Yellow Sea and the East China Sea. Estuarine, Coastal and Shelf Science, 58(1): 127–136
|
Wang Baodong, Wei Qinsheng, Chen Jianfang, et al. 2012. Annual cycle of hypoxia off the Changjiang (Yangtze River) Estuary. Marine Environmental Research, 77: 1–5. doi: 10.1016/j.marenvres.2011.12.007
|
Yan Weijin, Zhang Shen, Sun Pu, et al. 2003. How do nitrogen inputs to the Changjiang basin impact the Changjiang River nitrate: A temporal analysis for 1968–1997. Global Biogeochemical Cycles, 17(4): 1091. doi: 10.1029/2002GB002029
|
Zhai Weidong, Dai Minhan. 2009. On the seasonal variation of air-sea CO2 fluxes in the outer Changjiang (Yangtze River) Estuary, East China Sea. Marine Chemistry, 117(1–4): 2–10
|
Zhang Jing, Liu Sumei, Ren Jingling, et al. 2007. Nutrient gradients from the eutrophic Changjiang (Yangtze River) Estuary to the oligotrophic Kuroshio waters and re-evaluation of budgets for the East China Sea Shelf. Progress in Oceanography, 74(4): 449–478. doi: 10.1016/j.pocean.2007.04.019
|
Zhou Feng, Xue Huijie, Huang Daji, et al. 2015. Cross-shelf exchange in the shelf of the East China Sea. Journal of Geophysical Research: Oceans, 120(3): 1545–1572. doi: 10.1002/2014JC010567
|
Zhuang Yanpei, Jin Haiyan, Cai Weijun, et al. 2021a. Freshening leads to a three-decade trend of declining nutrients in the western Arctic Ocean. Environmental Research Letters, 16(5): 054047. doi: 10.1088/1748-9326/abf58b
|
Zhuang Yanpei, Jin Haiyan, Chen Jianfang, et al. 2020. Phytoplankton community structure at subsurface chlorophyll maxima on the western Arctic shelf: patterns, causes, and ecological importance. Journal of Geophysical Research: Biogeosciences, 125(6): e2019JG005570. doi: 10.1029/2019JG0005570
|
Zhuang Yanpei, Jin Haiyan, Gu Fan, et al. 2017. Composition of algal pigments in surface freshen layer after ice melt in the central Arctic. Acta Oceanologica Sinica, 36(8): 122–130. doi: 10.1007/s13131-017-1024-0
|
Zhuang Yanpei, Jin Haiyan, Li Hongliang, et al. 2016. Pacific inflow control on phytoplankton community in the Eastern Chukchi Shelf during summer. Continental Shelf Research, 129: 23–32. doi: 10.1016/j.csr.2016.09.010
|
Zhuang Yanpei, Jin Haiyan, Zhang Yang, et al. 2021b. Incursion of Alaska Coastal Water as a mechanism promoting small phytoplankton in the western Arctic Ocean. Progress in Oceanography, 197: 102639. doi: 10.1016/j.pocean.2021.102639
|
Zhuang Yanpei Supplentary material quan.docx |