Volume 42 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
Jungang Yang, Yongjun Jia, Chenqing Fan, Wei Cui. Preliminary results of the global ocean tide derived from HY-2A radar altimeter data[J]. Acta Oceanologica Sinica, 2023, 42(2): 65-73. doi: 10.1007/s13131-022-2025-1
Citation: Jungang Yang, Yongjun Jia, Chenqing Fan, Wei Cui. Preliminary results of the global ocean tide derived from HY-2A radar altimeter data[J]. Acta Oceanologica Sinica, 2023, 42(2): 65-73. doi: 10.1007/s13131-022-2025-1

Preliminary results of the global ocean tide derived from HY-2A radar altimeter data

doi: 10.1007/s13131-022-2025-1
Funds:  The National Key Research and Development Program of China under contract No. 2016YFC1401801.
More Information
  • Corresponding author: E-mail: jiayongjun@mail.nsoas.org.cn
  • Received Date: 2021-08-24
  • Accepted Date: 2022-04-12
  • Available Online: 2022-11-23
  • Publish Date: 2023-02-25
  • The HY-2A satellite, which is equipped with a radar altimeter and was launched on August 16, 2011, is the first Chinese marine dynamic environmental monitoring satellite. Extracting ocean tides is one of the important applications of the radar altimeter data. The radar altimeter data of the HY-2A satellite from November 1, 2011 to August 16, 2014 are used herein to extract global ocean tides. The constants representing the tidal constituents are extracted by HY-2A RA data with harmonic analysis based on the least squares method. Considering tide aliasing issues, the analysis of the alias periods and alias synodic periods of different tidal constituents shows that only the tidal constituents M2, N2, and K2 are retrieved precisely by the HY-2A RA data. The derived tidal constants of the tidal constituents M2, N2 and K2 are compared to those of tidal gauge data and the TPXO tide model results. The comparison between the derived results and the tidal gauge data shows that the RMSEs of the tidal amplitude and phase lag are 9.6 cm and 13.34°, 2.4 cm and 10.47°, and 8.1 cm and 14.19° for tidal constituents M2, N2, and K2, respectively. The comparisons of the semidiurnal tides with the TPXO model results show that tidal constituents have good consistency with the TPXO model results. These findings confirm the good performance of HY-2A RA for retrieving semidiurnal tides in the global ocean.
  • loading
  • Carrere L, Lyard F, Cancet M, et al. 2016. FES 2014: a new tidal model-Validation results and perspectives for improvements. Prague: ESA Living Planet Conference
    Cartwright D E, Ray R D. 1991. Energetics of global ocean tides from Geosat altimetry. Journal of Geophysical Research: Oceans, 96(C9): 16897–16912. doi: 10.1029/91JC01059
    Cheng Yongcun, Andersen O B. 2011. Multimission empirical ocean tide modeling for shallow waters and polar seas. Journal of Geophysical Research: Oceans, 116(C11): C11001. doi: 10.1029/2011JC007172
    Darwin G. 2009. The harmonic analysis of tidal observations. In: The Scientific Papers of Sir George Darwin: Oceanic Tides and Lunar Disturbance of Gravity (Cambridge Library Collection-Physical Sciences). Cambridge: Cambridge University Press, 1–69. doi: 10.1017/CBO9780511703461
    Doodson A T. 1921. The harmonic development of the tide-generating potential. Proceedings of the Royal Society A: Mathematical, Phyaical and Engineering Sceinces, 100(704): 305–329
    Doodson A T. 1958. Oceanic tides. Advances in Geophysics, 5: 117–152
    Egbert G D, Erofeeva S Y. 2002. Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology, 19(2): 183–204. doi: 10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
    Fang Guohong, Wang Yonggang, Wei Zexun, et al. 2004. Empirical cotidal charts of the Bohai, Yellow, and East China Seas from 10 years of TOPEX/Poseidon altimetry. Journal of Geophysical Research: Oceans, 109(C11): C11006. doi: 10.1029/2004JC002484
    Fang Guohong, Zheng Wenzhen, Chen Zongyong, et al. 1986. Analysis and Prediction of Tides and Tidal Currents (in Chinese). Beijing: China Ocean Press
    Fok H S. 2012. Ocean Tides Modeling Using Satellite Altimetry. Columbus: Ohio State University
    Godin G. 1972. The Analysis of Tides. Toronto: University of Toronto Press
    Hart-Davis M G, Piccioni G, Dettmering D, et al. 2021. EOT20: A global ocean tide model from multi-mission satellite altimetry. Earth System Science Data, 13(8): 3869–3884. doi: 10.5194/essd-13-3869-2021
    Jiang Xingwei, Lin Mingsen, Liu Jianqiang, et al. 2012. The HY-2 satellite and its preliminary assessment. International Journal of Digital Earth, 5(3): 266–281. doi: 10.1080/17538947.2012.658685
    Lambeck K. 1977. Tidal dissipation in the oceans: Astronomical, geophysical and oceanographic consequences. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 287(1347): 545–594,
    Le Provost C. 2001. Ocean tides. In: Fu L L, Cazenave A, eds. Satellite Altimetry and Earth Sciences: A Handbook of Techniques and Applications. San Diego, CA: Academic Press, 69: 267–303
    Matsumoto K, Takanezawa T, Ooe M. 2000. Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: A global model and a regional model around Japan. Journal of Oceanography, 56(5): 567–581. doi: 10.1023/A:1011157212596
    Munk W H, Cartwright D E. 1966. Tidal spectroscopy and prediction. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 259(1105): 533–581
    Oliver M A, Webster R. 1990. Kriging: A method of interpolation for geographical information systems. International Journal of Geographical Information Systems, 4(3): 313–332. doi: 10.1080/02693799008941549
    Pujol M I, Schaeffer P, Faugère Y, et al. 2018. Gauging the improvement of recent mean sea surface models: A new approach for identifying and quantifying their errors. Journal of Geophysical Research: Oceans, 123(8): 5889–5911. doi: 10.1029/2017JC013503
    Ray R D. 1999. A global ocean tide model from Topex/Poseidon altimetry: GOT99.2. Greenbelt, MD: Goddard Space Flight Center
    Schlax M G, Chelton D B. 1994. Aliased tidal errors in TOPEX/Poseidon sea surface height data. Journal of Geophysical Research: Oceans, 99(C12): 24761–24775. doi: 10.1029/94JC01925
    Schwiderski E W. 1980. On charting global ocean tides. Reviews of Geophysics, 18(1): 243–268. doi: 10.1029/RG018i001p00243
    Shum C K, Woodworth P L, Andersen O B, et al. 1997. Accuracy assessment of recent ocean tide models. Journal of Geophysical Research: Oceans, 102(C11): 25173–25194. doi: 10.1029/97JC00445
    Smithson M J. 1992. Pelagic tidal constants-3. IAPSO Publication Scientifique No. 35. Trieste: The International Association for the Physical Sciences of the Ocean (IAPSO) of the International Union of Geodesy and Geophysics, 191
    Stammer D, Ray R D, Andersen O B, et al. 2014. Accuracy assessment of global barotropic ocean tide models. Reviews of Geophysics, 52(3): 243–282. doi: 10.1002/2014RG000450
    Taguchi E, Stammer D, Zahel W. 2014. Inferring deep ocean tidal energy dissipation from the global high-resolution data-assimilative HAMTIDE model. Journal of Geophysical Research: Oceans, 119(7): 4573–4592. doi: 10.1002/2013JC009766
    Zhang Shenghai, Lei Jintao, Li Fei. 2015. Advances in global ocean tide models. Advances in Earth Science (in Chinese), 30(5): 579–588. doi: 10.11867/j.issn.1001-8166.2015.05.0579
    Zu Tingting, Gan Jianping, Erofeeva S Y. 2008. Numerical study of the tide and tidal dynamics in the South China Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 55(2): 137–154. doi: 10.1016/j.dsr.2007.10.007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (343) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return