Citation: | Shicheng Lin, Jianwei Niu, Guangping Liu, Xing Wei, Shuqun Cai. Variations of suspended sediment transport caused by changes in shoreline and bathymetry in the Zhujiang (Pearl) River Estuary in the wet season[J]. Acta Oceanologica Sinica, 2022, 41(10): 54-73. doi: 10.1007/s13131-022-2017-1 |
Booij N, Ris R C, Holthuijsen L H. 1999. A third-generation wave model for coastal regions: 1. Model description and validation. Journal of Geophysical Research, 104(C4): 7649–7666. doi: 10.1029/98JC02622
|
Burchard H, Schuttelaars H M, Ralston D K. 2018. Sediment trapping in estuaries. Annual Review of Marine Science, 10: 371–395. doi: 10.1146/annurev-marine-010816-060535
|
Chapman D C. 1985. Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model. Journal of Physical Oceanography, 15(8): 1060–1075. doi: 10.1175/1520-0485(1985)015<1060:NTOCSO>2.0.CO;2
|
Chen Yongqin David, Chen Xiaohong. 2008. Modeling transport and distribution of suspended sediments in Pearl River estuary. Journal of Coastal Research, (10052): 163–170. doi: 10.2112/1551-5036-52.sp1.163
|
Cloern J E. 1987. Turbidity as a control on phytoplankton biomass and productivity in estuaries. Continental Shelf Research, 7(11–12): 1367–1381,
|
Dai Zhijun, Fagherazzi S, Mei Xuefei, et al. 2016. Linking the infilling of the north branch in the Changjiang (Yangtze) estuary to anthropogenic activities from 1958 to 2013. Marine Geology, 379: 1–12. doi: 10.1016/j.margeo.2016.05.006
|
Dai Zhijun, Liu J T, Fu Gui, et al. 2013. A thirteen-year record of bathymetric changes in the north passage, Changjiang (Yangtze) estuary. Geomorphology, 187: 101–107. doi: 10.1016/j.geomorph.2013.01.004
|
Dai Zhijun, Mei Xuefei, Darby S E, et al. 2018. Fluvial sediment transfer in the Changjiang (Yangtze) river-estuary depositional system. Journal of Hydrology, 566: 719–734. doi: 10.1016/j.jhydrol.2018.09.019
|
Dai S B, Yang S L, Cai A M. 2008. Impacts of dams on the sediment flux of the Pearl River, southern China. CATENA, 76(1): 36–43. doi: 10.1016/j.catena.2008.08.004
|
de Jonge V N, Schuttelaars H M, van Beusekom J E E, et al. 2014. The influence of channel deepening on estuarine turbidity levels and dynamics, as exemplified by the Ems estuary. Estuarine, Coastal and Shelf Science, 139: 46–59,
|
Dijkstra Y M, Schuttelaars H M, Schramkowski G, et al. 2019. Modeling the transition to high sediment concentrations as a response to channel deepening in the Ems River Estuary. Journal of Geophysical Research, 124(3): 1578–1594. doi: 10.1029/2018JC014367
|
Dyer K R. 1974. The salt balance in stratified estuaries. Estuarine and Coastal Marine Science, 2(3): 273–281. doi: 10.1016/0302-3524(74)90017-6
|
Egbert G D, Erofeeva S Y. 2002. Efficient inverse modeling of Barotropic Ocean tides. Journal of Atmospheric and Oceanic Technology, 19(2): 183–204. doi: 10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
|
Flather R A. 1976. A tidal model of the Northwest European continental shelf. Memoires de la Societe Royale des Sciences de Liege, 6(10): 141–164
|
Haidvogel D B, Arango H, Budgell W P, et al. 2008. Ocean forecasting in terrain-following coordinates: formulation and skill assessment of the Regional Ocean Modeling System. Journal of Computational Physics, 227(7): 3595–3624. doi: 10.1016/j.jcp.2007.06.016
|
Hu Jiatang, Li Shiyu, Geng Bingxu. 2011. Modeling the mass flux budgets of water and suspended sediments for the river network and estuary in the Pearl River Delta, China. Journal of Marine Systems, 88(2): 252–266. doi: 10.1016/j.jmarsys.2011.05.002
|
Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77(3): 437–472. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
|
Kerner M. 2007. Effects of deepening the Elbe Estuary on sediment regime and water quality. Estuarine, Coastal and Shelf Science, 75(4): 492–500,
|
Lesourd S, Lesueur P, Brun-Cottan J C, et al. 2001. Morphosedimentary evolution of the macrotidal Seine estuary subjected to human impact. Estuaries, 24(6): 940. doi: 10.2307/1353008
|
Lin Shicheng, Liu Guangping, Niu Jianwei, et al. 2021. Responses of hydrodynamics to changes in shoreline and bathymetry in the Pearl River Estuary, China. Continental Shelf Research, 229: 104556. doi: 10.1016/j.csr.2021.104556
|
Liu Guangping, Cai Shuqun. 2019. Modeling of suspended sediment by coupled wave-current model in the Zhujiang (Pearl) River Estuary. Acta Oceanologica Sinica, 38(7): 22–35. doi: 10.1007/s13131-019-1455-3
|
Liu Feng, Hu Shuai, Guo Xiaojuan, et al. 2018. Recent changes in the sediment regime of the Pearl River (South China): causes and implications for the Pearl River Delta. Hydrological Processes, 32(12): 1771–1785. doi: 10.1002/hyp.11513
|
Liu Jintao, Hu Jiatang, Li Shiyu, et al. 2020. A model study on the short-term impact of reclamation on the hydrodynamic processes in the Lingdingyang Bay. Marine Science Bulletin, 39(02): 178–190. doi: 10.11840/j.issn.1001-6392.2020.02.005
|
Liu Yonggang, MaCcready P, Hickey B M, et al. 2009. Evaluation of a coastal ocean circulation model for the Columbia River plume in summer 2004. Journal of Geophysical Research, 114(C2): C00B04. doi: 10.1029/2008JC004929
|
Luo Xianlin, Yang Qingshu, Jia Liangwen, et al. 2002. River-bed Evolution of the Pearl River Delta (in Chinese). Guangzhou: Sun Yat-sen University Press, 91–206
|
Meade R H. 1969. Landward transport of bottom sediments in estuaries of the Atlantic coastal plain. Journal of Sedimentary Research, 39(1): 222–234. doi: 10.1306/74D71C1C-2B21-11D7-8648000102C1865D
|
Mellor G L, Yamada T. 1982. Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics, 20(4): 851–875. doi: 10.1029/RG020i004p00851
|
Orlanski I. 1976. A simple boundary condition for unbounded hyperbolic flows. Journal of Computational Physics, 21(3): 251–269. doi: 10.1016/0021-9991(76)90023-1
|
Shchepetkin A F, McWilliams J C. 2005. The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9(4): 347–404. doi: 10.1016/j.ocemod.2004.08.002
|
Shen Huanting, He Songling, Mao Zhichang, et al. 2001. On the turbidity maximum in the Chinese estuaries. Journal of Sediment Research (in Chinese), (1): 23–29. doi: 10.3321/j.issn:0468-155X.2001.01.004
|
Song Yuhe, Haidvogel D. 1994. A semi-implicit ocean circulation model using a generalized topography-following coordinate system. Journal of Computational Physics, 115(1): 228–244. doi: 10.1006/jcph.1994.1189
|
Styles R, Glenn S M. 2000. Modeling stratified wave and current bottom boundary layers on the continental shelf. Journal of Geophysical Research, 105(10): 24119–24139. doi: 10.1029/2000JC900115
|
Tan Chao, Huang Bensheng, Liu Kunsong, et al. 2017. Using the wavelet transform to detect temporal variations in hydrological processes in the Pearl River, China. Quaternary International, 440: 52–63. doi: 10.1016/j.quaint.2016.02.043
|
van der Wal D, Pye K, Neal A. 2002. Long-term morphological change in the Ribble Estuary, northwest England. Marine Geology, 189(3/4): 249–266,
|
van Maren D S, van Kessel T, Cronin K, et al. 2015. The impact of channel deepening and dredging on estuarine sediment concentration. Continental Shelf Research, 95: 1–14. doi: 10.1016/j.csr.2014.12.010
|
Wai O W H, Wang C H, Li Y S, et al. 2004. The formation mechanisms of turbidity maximum in the Pearl River Estuary, China. Marine Pollution Bulletin, 48(5–6): 441–448,
|
Warner J C, Sherwood C R, Signell R P, et al. 2008. Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model. Computers & Geosciences, 34(10): 1284–1306. doi: 10.1016/j.cageo.2008.02.012
|
Willmott C J. 1981. On the validation of models. Physical Geography, 2(2): 184–194. doi: 10.1080/02723646.1981.10642213
|
Wei Xing, Cai Shuqun, Zhan Weikang, et al. 2021. Changes in the distribution of surface sediment in Pearl River Estuary, 1975–2017, largely due to human activity. Continental Shelf Research, 228. doi: 10.1016/j.csr.2021.104538
|
Wu Z Y, Saito Y, Zhao D N, et al. 2016. Impact of human activities on subaqueous topographic change in Lingding Bay of the Pearl River estuary, China, during 1955–2013. Scientific Reports, 6: 37742. doi: 10.1038/srep37742
|
Xie Lili, Liu Xia, Yang Qingshu, et al. 2015. Variations of current and sediment transport in Lingding Bay during spring tide in flood season driven by human activities. Journal of Sediment Research (in Chinese), (3): 56–62. doi: 10.16239/j.cnki.0468-155x.2015.03.009
|
Yan Dong, Song Dehai, Bao Xianwen. 2020. Spring-neap tidal variation and mechanism analysis of the maximum turbidity in the Pearl River Estuary during flood season. Journal of Tropical Oceanography (in Chinese), 39(1): 20–35
|
Yang Liuzhu, Liu Feng, Gong Wenping, et al. 2019. Morphological response of Lingding Bay in the Pearl River Estuary to human intervention in recent decades. Ocean & Coastal Management, 176: 1–10. doi: 10.1016/j.ocecoaman.2019.04.011
|
Yao Zhangmin, Wang Yongyong, Li Aiming. 2009. Primary analysis of water distribution ratio variation in main waterway in Pearl River Delta. Pearl River (in Chinese), (2): 43–45, 51
|
Zeng Xiangming, He Ruoying, Xue Zuo, et al. 2015. River-derived sediment suspension and transport in the Bohai, Yellow, and East China Seas: a preliminary modeling study. Continental Shelf Research, 111: 112–125. doi: 10.1016/j.csr.2015.08.015
|
Zhan Weikang, Wu Jie, Wei Xing, et al. 2019. Spatio-temporal variation of the suspended sediment concentration in the Pearl River Estuary observed by MODIS during 2003–2015. Continental Shelf Research, 172: 22–32. doi: 10.1016/j.csr.2018.11.007
|
Zhang Guang, Chen Yuren, Cheng Weicong, et al. 2021a. Wave effects on sediment transport and entrapment in a channel-shoal estuary: the Pearl River Estuary in the dry winter season. Journal of Geophysical Research, 126(4): e2020JC016905. doi: 10.1029/2020JC016905
|
Zhang Guang, Cheng Weicong, Chen Lianghong, et al. 2019. Transport of riverine sediment from different outlets in the Pearl River Estuary during the wet season. Marine Geology, 415: 105957. doi: 10.1016/j.margeo.2019.06.002
|
Zhang Ping, Yang Qingshu, Wang Heng, et al. 2021b. Stepwise alterations in tidal hydrodynamics in a highly human-modified estuary: the roles of channel deepening and narrowing. Journal of Hydrology, 597: 126153. doi: 10.1016/j.jhydrol.2021.126153
|