Citation: | Yanxing Li, Liang Chang, Guoping Gao. Impact of Arctic Oscillation on cloud radiative forcing and September sea ice retreat[J]. Acta Oceanologica Sinica, 2022, 41(10): 131-139. doi: 10.1007/s13131-022-2010-8 |
Barton N P, Klein S A, Boyle J S, et al. 2012. Arctic synoptic regimes: Comparing domain-wide Arctic cloud observations with CAM4 and CAM5 during similar dynamics. Journal of Geophysical Research: Atmospheres, 117(D15): D15205
|
Bi Haibo, Yang Qinghua, Liang Xi, et al. 2019. Contributions of advection and melting processes to the decline in sea ice in the Pacific sector of the Arctic Ocean. The Cryosphere, 13(5): 1423–1439. doi: 10.5194/tc-13-1423-2019
|
Budikova D. 2009. Role of Arctic sea ice in global atmospheric circulation: A review. Global and Planetary Change, 68(3): 149–163. doi: 10.1016/j.gloplacha.2009.04.001
|
Cavalieri D J, Parkinson C L, Gloersen P, et al. 1996. Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 1. Boulder, CO, USA: NASA National Snow and Ice Data Center Distributed Active Archive Center
|
Chapman W L, Walsh J E. 1993. Recent variations of sea ice and air temperature in high latitudes. Bulletin of the American Meteorological Society, 74(1): 33–48. doi: 10.1175/1520-0477(1993)074<0033:RVOSIA>2.0.CO;2
|
Choi Y S, Hwang J, Ok J, et al. 2020. Effect of Arctic clouds on the ice-albedo feedback in midsummer. International Journal of Climatology, 40(10): 4707–4714. doi: 10.1002/joc.6469
|
Choi Y S, Kim B M, Hur S K, et al. 2014. Connecting early summer cloud-controlled sunlight and late summer sea ice in the Arctic. Journal of Geophysical Research:Atmospheres, 119(19): 11087–11099. doi: 10.1002/2014JD022013
|
Cohen J, Screen J A, Furtado J C, et al. 2014. Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience, 7(9): 627–637. doi: 10.1038/ngeo2234
|
Cox C J, Uttal T, Long C N, et al. 2016. The role of springtime Arctic clouds in determining autumn sea ice extent. Journal of Climate, 29(18): 6581–6596. doi: 10.1175/JCLI-D-16-0136.1
|
Curry J A, Schramm J L, Rossow W B, et al. 1996. Overview of Arctic cloud and radiation characteristics. Journal of Climate, 9(8): 1731–1764. doi: 10.1175/1520-0442(1996)009<1731:OOACAR>2.0.CO;2
|
Devasthale A, Tjernström M, Caian M, et al. 2012. Influence of the Arctic Oscillation on the vertical distribution of clouds as observed by the A-Train constellation of satellites. Atmospheric Chemistry and Physics, 12(21): 10535–10544. doi: 10.5194/acp-12-10535-2012
|
Ding Qinghua, Schweiger A, L’Heureux M, et al. 2017. Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice. Nature Climate Change, 7(4): 289–295. doi: 10.1038/nclimate3241
|
Dong Xiquan, Xi Baike, Crosby K, et al. 2010. A 10 year climatology of Arctic cloud fraction and radiative forcing at Barrow, Alaska. Journal of Geophysical Research: Atmospheres, 115(D17): D17212. doi: 10.1029/2009JD013489
|
Eastman R, Warren S G. 2010. Interannual variations of Arctic cloud types in relation to sea ice. Journal of Climate, 23(15): 4216–4232. doi: 10.1175/2010JCLI3492.1
|
Grebmeier J M, Maslowski W. 2014. The Pacific Arctic Region: Ecosystem Status and Trends in a Rapidly Changing Environment. Dordrecht, Netherlands: Springer
|
Hegyi B M, Taylor P C. 2017. The regional influence of the Arctic Oscillation and Arctic Dipole on the wintertime Arctic surface radiation budget and sea ice growth. Geophysical Research Letters, 44(9): 4341–4350. doi: 10.1002/2017GL073281
|
Hersbach H, Bell B, Berrisford P, et al. 2020. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730): 1999–2049. doi: 10.1002/qj.3803
|
Holland M M, Stroeve J. 2011. Changing seasonal sea ice predictor relationships in a changing Arctic climate. Geophysical Research Letters, 38(18): L18501
|
Huang Yiyi, Dong Xiquan, Bailey D A, et al. 2019. Thicker clouds and accelerated Arctic sea ice decline: The atmosphere-sea ice interactions in spring. Geophysical Research Letters, 46(12): 6980–6989. doi: 10.1029/2019GL082791
|
Huang Yiyi, Dong Xiquan, Xi Baike, et al. 2017. The footprints of 16 year trends of Arctic springtime cloud and radiation properties on September sea ice retreat. Journal of Geophysical Research: Atmospheres, 122(4): 2179–2193. doi: 10.1002/2016JD026020
|
Ingram W J, Wilson C A, Mitchell J F B. 1989. Modeling climate change: An assessment of sea ice and surface albedo feedbacks. Journal of Geophysical Research:Atmospheres, 94(D6): 8609–8622. doi: 10.1029/JD094iD06p08609
|
Kawaguchi Y, Kikuchi T, Inoue R. 2014. Vertical heat transfer based on direct microstructure measurements in the ice-free Pacific-side Arctic Ocean: The role and impact of the Pacific water intrusion. Journal of Oceanography, 70(4): 343–353. doi: 10.1007/s10872-014-0234-8
|
Kay J E, L’Ecuyer T. 2013. Observational constraints on Arctic Ocean clouds and radiative fluxes during the early 21st century. Journal of Geophysical Research: Atmospheres, 118(13): 7219–7236. doi: 10.1002/jgrd.50489
|
Kay J E, L’Ecuyer T, Gettelman A, et al. 2008. The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum. Geophysical Research Letters, 35(8): L08503
|
Klein S A, Hartmann D L. 1993. The seasonal cycle of low stratiform clouds. Journal of Climate, 6(8): 1587–1606. doi: 10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2
|
Kwok R. 2018. Arctic sea ice thickness, volume, and multiyear ice coverage: losses and coupled variability (1958–2018). Environmental Research Letters, 13(10): 105005. doi: 10.1088/1748-9326/aae3ec
|
Li Ying, Thompson D W J, Huang Yi, et al. 2014a. Observed linkages between the northern annular mode/North Atlantic Oscillation, cloud incidence, and cloud radiative forcing. Geophysical Research Letters, 41(5): 1681–1688. doi: 10.1002/2013GL059113
|
Li Ying, Thompson D W J, Stephens G L, et al. 2014b. A global survey of the instantaneous linkages between cloud vertical structure and large-scale climate. Journal of Geophysical Research: Atmospheres, 119(7): 3770–3792. doi: 10.1002/2013JD020669
|
Liang Yu, Bi Haibo, Wang Yunhe, et al. 2020. Role of atmospheric factors in forcing Arctic sea ice variability. Acta Oceanologica Sinica, 39(9): 60–72. doi: 10.1007/s13131-020-1629-6
|
Liu Jiping, Curry J A, Hu Yongyun. 2004. Recent Arctic sea ice variability: Connections to the Arctic Oscillation and the ENSO. Geophysical Research Letters, 31(9): L09211
|
Luo Binhe, Luo Dehai, Wu Lixin, et al. 2017. Atmospheric circulation patterns which promote winter Arctic sea ice decline. Environmental Research Letters, 12(5): 054017. doi: 10.1088/1748-9326/aa69d0
|
Luo Binhe, Wu Lixin, Luo Dehai, et al. 2019. The winter midlatitude-Arctic interaction: Effects of North Atlantic SST and high-latitude blocking on Arctic sea ice and Eurasian cooling. Climate Dynamics, 52(5/6): 2981–3004. doi: 10.1007/s00382-018-4301-5
|
Lynch A H, Serreze M C, Cassano E N, et al. 2016. Linkages between Arctic summer circulation regimes and regional sea ice anomalies. Journal of Geophysical Research: Atmospheres, 121(13): 7868–7880. doi: 10.1002/2016JD025164
|
Maslanik J, Drobot S, Fowler C, et al. 2007. On the Arctic climate paradox and the continuing role of atmospheric circulation in affecting sea ice conditions. Geophysical Research Letters, 34(3): L03711
|
Meredith M, Sommerkorn M, Cassotta S, et al. 2019. Polar Regions. Chapter 3, IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. https://repository.library.noaa.gov/view/noaa/27411/noaa_27411_DS1.pdf [2019-12-30/2021-10-01]
|
Ogi M, Rysgaard S, Barber D G. 2016. Importance of combined winter and summer Arctic Oscillation (AO) on September sea ice extent. Environmental Research Letters, 11(3): 034019. doi: 10.1088/1748-9326/11/3/034019
|
Ogi M, Wallace J M. 2012. The role of summer surface wind anomalies in the summer Arctic sea ice extent in 2010 and 2011. Geophysical Research Letters, 39(9): L09704
|
Ogi M, Yamazaki K. 2010. Trends in the summer northern annular mode and Arctic sea ice. SOLA, 2010(6): 41–44
|
Olonscheck D, Mauritsen T, Notz D. 2019. Arctic sea-ice variability is primarily driven by atmospheric temperature fluctuations. Nature Geoscience, 12(6): 430–434. doi: 10.1038/s41561-019-0363-1
|
Overland J E, Wang Muyin. 2010. Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus A: Dynamic Meteorology and Oceanography, 62(1): 1–9. doi: 10.1111/j.1600-0870.2009.00421.x
|
Perlwitz J, Graf H F. 1995. The statistical connection between tropospheric and stratospheric circulation of the Northern Hemisphere in winter. Journal of Climate, 8(10): 2281–2295. doi: 10.1175/1520-0442(1995)008<2281:TSCBTA>2.0.CO;2
|
Philipp D, Stengel M, Ahrens B. 2020. Analyzing the Arctic feedback mechanism between sea ice and low-level clouds using 34 years of satellite observations. Journal of Climate, 33(17): 7479–7501. doi: 10.1175/JCLI-D-19-0895.1
|
Ramanathan V, Cess R D, Harrison E F, et al. 1989. Cloud-radiative forcing and climate: Results from the earth radiation budget experiment. Science, 243(4887): 57–63. doi: 10.1126/science.243.4887.57
|
Rigor I G, Wallace J M. 2004. Variations in the age of Arctic sea-ice and summer sea-ice extent. Geophysical Research Letters, 31(9): L09401
|
Rigor I G, Wallace J M, Colony R L. 2002. Response of sea ice to the Arctic Oscillation. Journal of Climate, 15(18): 2648–2663. doi: 10.1175/1520-0442(2002)015<2648:ROSITT>2.0.CO;2
|
Rudeva I, Simmonds I. 2021. Midlatitude winter extreme temperature events and connections with anomalies in the arctic and tropics. Journal of Climate, 34(10): 3733–3749. doi: 10.1175/JCLI-D-20-0371.1
|
Screen J A, Bracegirdle T J, Simmonds I. 2018. Polar climate change as manifest in atmospheric circulation. Current Climate Change Reports, 4(4): 383–395. doi: 10.1007/s40641-018-0111-4
|
Screen J A, Deser C, Simmonds I, et al. 2014. Atmospheric impacts of Arctic sea-ice loss, 1979–2009: Separating forced change from atmospheric internal variability. Climate Dynamics, 43(1/2): 333–344. doi: 10.1007/s00382-013-1830-9
|
Sedlar J, Devasthale A. 2012. Clear-sky thermodynamic and radiative anomalies over a sea ice sensitive region of the Arctic. Journal of Geophysical Research: Atmospheres, 117(D19): D19111
|
Sedlar J, Tjernström M, Mauritsen T, et al. 2011. A transitioning Arctic surface energy budget: the impacts of solar zenith angle, surface albedo and cloud radiative forcing. Climate Dynamics, 37(7/8): 1643–1660. doi: 10.1007/s00382-010-0937-5
|
Shupe M D, Intrieri J M. 2004. Cloud radiative forcing of the Arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle. Journal of Climate, 17(3): 616–628. doi: 10.1175/1520-0442(2004)017<0616:CRFOTA>2.0.CO;2
|
Simmonds I, Li Muyuan. 2021. Trends and variability in polar sea ice, global atmospheric circulations, and baroclinicity. Annals of the New York Academy of Sciences, 1504(1): 167–186. doi: 10.1111/nyas.14673
|
Smith K L, Polvani L M, Tremblay L B. 2018. The impact of stratospheric circulation extremes on minimum Arctic sea ice extent. Journal of Climate, 31(18): 7169–7183. doi: 10.1175/JCLI-D-17-0495.1
|
Thompson D W J, Wallace J M. 1998. The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophysical Research Letters, 25(9): 1297–1300. doi: 10.1029/98GL00950
|
Thompson D W J, Wallace J M. 2000. Annular modes in the extratropical circulation. Part I: Month-to-month variability. Journal of Climate, 13(5): 1000–1016. doi: 10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2
|
Vavrus S. 2004. The impact of cloud feedbacks on Arctic climate under greenhouse forcing. Journal of Climate, 17(3): 603–615. doi: 10.1175/1520-0442(2004)017<0603:TIOCFO>2.0.CO;2
|
Vavrus S, Holland M M, Bailey D A. 2011. Changes in Arctic clouds during intervals of rapid sea ice loss. Climate Dynamics, 36(7/8): 1475–1489. doi: 10.1007/s00382-010-0816-0
|
Walsh J E, Johnson C M. 1979. Interannual atmospheric variability and associated fluctuations in Arctic sea ice extent. Journal of Geophysical Research: Oceans, 84(C11): 6915–6928. doi: 10.1029/JC084iC11p06915
|
Wang Jia, Ikeda M. 2000. Arctic oscillation and Arctic sea-ice oscillation. Geophysical Research Letters, 27(9): 1287–1290. doi: 10.1029/1999GL002389
|
Wang Xuanji, Key J R. 2003. Recent trends in Arctic surface, cloud, and radiation properties from space. Science, 299(5613): 1725–1728. doi: 10.1126/science.1078065
|
Wang Xuanji, Key J R. 2005. Arctic surface, cloud, and radiation properties based on the AVHRR Polar Pathfinder dataset. Part I: Spatial and temporal characteristics. Journal of Climate, 18(14): 2558–2574. doi: 10.1175/JCLI3438.1
|
Wang Wenshan, Zender C S, van As D, et al. 2019. Spatial distribution of melt season cloud radiative effects over Greenland: Evaluating satellite observations, reanalyses, and model simulations against in situ measurements. Journal of Geophysical Research: Atmospheres, 124(1): 57–71. doi: 10.1029/2018JD028919
|
Wang Jia, Zhang Jinlun, Watanabe E, et al. 2009. Is the dipole anomaly a major driver to record lows in Arctic summer sea ice extent?. Geophysical Research Letters, 36(5): L05706
|
Watanabe E, Wang Jia, Sumi A, et al. 2006. Arctic dipole anomaly and its contribution to sea ice export from the Arctic Ocean in the 20th century. Geophysical Research Letters, 33(23): L23703. doi: 10.1029/2006GL028112
|
Wu Bingyi, Wang Jia. 2002. Possible impacts of winter Arctic Oscillation on Siberian high, the East Asian winter monsoon and sea-ice extent. Advances in Atmospheric Sciences, 19(2): 297–320. doi: 10.1007/s00376-002-0024-x
|
Wu Bingyi, Wang Jia, Walsh J E. 2006. Dipole anomaly in the winter Arctic atmosphere and its association with sea ice motion. Journal of Climate, 19(2): 210–225. doi: 10.1175/JCLI3619.1
|
Zhang Rong. 2015. Mechanisms for low-frequency variability of summer Arctic sea ice extent. Proceedings of the National Academy of Sciences of the United States of America, 112(15): 4570–4575. doi: 10.1073/pnas.1422296112
|
Zhang T, Bowling S A, Stamnes K. 1997. Impact of the atmosphere on surface radiative fluxes and snowmelt in the Arctic and Subarctic. Journal of Geophysical Research: Atmospheres, 102(D4): 4287–4302. doi: 10.1029/96JD02548
|
Zhang Shuyu, Gan T Y, Bush A B G. 2020. Variability of arctic sea ice based on quantile regression and the teleconnection with large-scale climate patterns. Journal of Climate, 33(10): 4009–4025. doi: 10.1175/JCLI-D-19-0375.1
|
Zhang Xiangdong, Ikeda M, Walsh J E. 2003. Arctic sea ice and freshwater changes driven by the atmospheric leading mode in a coupled sea ice-ocean model. Journal of Climate, 16(13): 2159–2177. doi: 10.1175/2758.1
|
Zhao Jinping, Cao Yong, Shi Jiuxin. 2006. Core region of Arctic Oscillation and the main atmospheric events impact on the Arctic. Geophysical Research Letters, 33(22): L22708. doi: 10.1029/2006GL027590
|