Citation: | Tianshi Du, Peiran Yang, Zhao Jing. On the variability of vertical eddy heat flux in the upper ocean[J]. Acta Oceanologica Sinica, 2022, 41(10): 94-99. doi: 10.1007/s13131-022-2009-1 |
Callies J, Barkan R, Garabato A N. 2020. Time scales of submesoscale flow inferred from a mooring array. Journal of Physical Oceanography, 50(4): 1065–1086. doi: 10.1175/JPO-D-19-0254.1
|
Cao Haijin, Fox-Kemper B, Jing Zhiyou. 2021. Submesoscale eddies in the upper ocean of the Kuroshio Extension from high-resolution simulation: energy budget. Journal of Physical Oceanography, 51(7): 2181–2201
|
Cao Haijin, Jing Zhiyou, Fox-Kemper B, et al. 2019. Scale transition from geostrophic motions to internal waves in the northern South China Sea. Journal of Geophysical Research: Oceans, 124(12): 9364–9383. doi: 10.1029/2019JC015575
|
Capet X, McWilliams J C, Molemaker M J, et al. 2008. Mesoscale to submesoscale transition in the California Current system: Part II. frontal processes. Journal of Physical Oceanography, 38(1): 44–64. doi: 10.1175/2007JPO3672.1
|
Carton J A, Chepurin G A, Chen Ligang. 2018. SODA3: A new ocean climate reanalysis. Journal of Climate, 31(17): 6967–6983. doi: 10.1175/JCLI-D-18-0149.1
|
Gaube P, Chelton D B, Samelson R M, et al. 2015. Satellite observations of mesoscale eddy-induced Ekman Pumping. Journal of Physical Oceanography, 45(1): 104–132. doi: 10.1175/JPO-D-14-0032.1
|
Griffies S M, Hallberg R W. 2000. Biharmonic friction with a Smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models. Monthly Weather Review, 128(8): 2935–2946. doi: 10.1175/1520-0493(2000)128<2935:BFWASL>2.0.CO;2
|
Griffies S M, Winton M, Anderson W G, et al. 2015. Impacts on ocean heat from transient mesoscale eddies in a hierarchy of climate models. Journal of Climate, 28(3): 952–977. doi: 10.1175/JCLI-D-14-00353.1
|
Gula J, Molemaker M J, McWilliams J C. 2014. Submesoscale cold filaments in the Gulf Stream. Journal of Physical Oceanography, 44(10): 2617–2643. doi: 10.1175/JPO-D-14-0029.1
|
Haidvogel D B, Arango H G, Hedstrom K, et al. 2000. Model evaluation experiments in the North Atlantic Basin: simulations in nonlinear terrain-following coordinates. Dynamics of Atmospheres and Oceans, 32(3–4): 239–281. doi: 10.1016/S0377-0265(00)00049-X
|
Jing Zhao, Wang Shengpeng, Wu Lixin, et al. 2020. Maintenance of mid-latitude oceanic fronts by mesoscale eddies. Science Advances, 6(31): eaba7880. doi: 10.1126/sciadv.aba7880
|
Large W G, McWilliams J C, Doney S C. 1994. Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics, 32(4): 363–403. doi: 10.1029/94RG01872
|
Large W G, Yeager S. 2004. Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux (No. NCAR/TN-460+STR). University Corporation for Atmospheric Research,
|
Qiu Bo, Chen Shuiming, Klein P, et al. 2020. Reconstructing upper-ocean vertical velocity field from sea surface height in the presence of unbalanced motion. Journal of Physical Oceanography, 50(1): 55–79. doi: 10.1175/JPO-D-19-0172.1
|
Rohr T, Harrison C, Long M C, et al. 2020. Eddy-modified iron, light, and phytoplankton cell division rates in the simulated Southern Ocean. Global Biogeochemical Cycles, 34(6): e2019GB006380
|
Rudnick D L. 2001. On the skewness of vorticity in the upper ocean. Geophysical Research Letters, 28(10): 2045–2048. doi: 10.1029/2000GL012265
|
Saha S, Moorthi S, Pan H L, et al. 2010. The NCEP climate forecast system reanalysis. Bulletin of the American Meteorological Society, 91(8): 1015–1058. doi: 10.1175/2010BAMS3001.1
|
Sasaki H, Klein P, Qiu Bo, et al. 2014. Impact of oceanic-scale interactions on the seasonal modulation of ocean dynamics by the atmosphere. Nature Communications, 5: 5636. doi: 10.1038/ncomms6636
|
Shchepetkin A F, McWilliams J C. 2005. The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9(4): 347–404. doi: 10.1016/j.ocemod.2004.08.002
|
Shcherbina A Y, D’Asaro E A, Lee C M, et al. 2013. Statistics of vertical vorticity, divergence, and strain in a developed submesoscale turbulence field. Geophysical Research Letters, 40(17): 4706–4711. doi: 10.1002/grl.50919
|
Su Zhan, Wang Jinbo, Klein P, et al. 2018. Ocean submesoscales as a key component of the global heat budget. Nature Communications, 9: 775. doi: 10.1038/s41467-018-02983-w
|
Waterman S, Jayne S R. 2011. Eddy-mean flow interactions in the along-stream development of a Western Boundary Current Jet: an idealized model study. Journal of Physical Oceanography, 41(4): 682–707. doi: 10.1175/2010JPO4477.1
|
Yang Peiran, Jing Zhao, Sun Bingrong, et al. 2021. On the upper-ocean vertical eddy heat transport in the Kuroshio Extension: Part I. variability and dynamics. Journal of Physical Oceanography, 51(1): 229–246. doi: 10.1175/JPO-D-20-0068.1
|
Yu Xiaolong, Garabato A C N, Martin A P, et al. 2019. An annual cycle of submesoscale vertical flow and restratification in the upper ocean. Journal of Physical Oceanography, 49(6): 1439–1461. doi: 10.1175/JPO-D-18-0253.1
|
Zhang Zhiwei, Zhang Xincheng, Qiu Bo, et al. 2021. Submesoscale currents in the subtropical upper ocean observed by long-term high-resolution mooring arrays. Journal of Physical Oceanography, 51(1): 187–206. doi: 10.1175/JPO-D-20-0100.1
|