Volume 41 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
Qi Shu, Zhenya Song, Ying Bao, Xiaodan Yang, Yajuan Song, Xinfang Li, Meng Wei, Fangli Qiao. FIO-ESM v2.0 CORE2-forced experiment for the CMIP6 Ocean Model Intercomparison Project[J]. Acta Oceanologica Sinica, 2022, 41(10): 22-31. doi: 10.1007/s13131-022-2000-x
Citation: Qi Shu, Zhenya Song, Ying Bao, Xiaodan Yang, Yajuan Song, Xinfang Li, Meng Wei, Fangli Qiao. FIO-ESM v2.0 CORE2-forced experiment for the CMIP6 Ocean Model Intercomparison Project[J]. Acta Oceanologica Sinica, 2022, 41(10): 22-31. doi: 10.1007/s13131-022-2000-x

FIO-ESM v2.0 CORE2-forced experiment for the CMIP6 Ocean Model Intercomparison Project

doi: 10.1007/s13131-022-2000-x
Funds:  The National Key R&D Program of China under contract Nos 2018YFA0605701 and 2016YFB0201100; the National Natural Science Foundation of China under contract Nos 41941012 and 41821004; the Basic Scientific Fund for National Public Research Institute of China (ShuXingbei Young Talent Program) under contract No. 2019S06.
More Information
  • Corresponding author: E-mail: qiaofl@fio.org.cn
  • Received Date: 2021-09-16
  • Accepted Date: 2021-11-29
  • Available Online: 2022-05-11
  • Publish Date: 2022-10-27
  • We introduced the Coupled Model Intercomparison Project Phase 6 (CMIP6) Ocean Model Intercomparison Project CORE2-forced (OMIP-1) experiment by using the First Institute of Oceanography Earth System Model version 2.0 (FIO-ESM v2.0), and comprehensively evaluated the simulation results. Unlike other OMIP models, FIO-ESM v2.0 includes a coupled ocean surface wave component model that takes into account non-breaking surface wave-induced vertical mixing in the ocean and effect of surface wave Stokes drift on air-sea momentum and heat fluxes in the climate system. A sub-layer sea surface temperature (SST) diurnal cycle parameterization was also employed to take into account effect of SST diurnal cycle on air-sea heat fluxes to improve simulations of air-sea interactions. Evaluations show that mean values and long-term trends of significant wave height were adequately reproduced in the FIO-ESM v2.0 OMIP-1 simulations, and there is a reasonable fit between the SST diurnal cycle obtained from in situ observations and that parameterized by FIO-ESM v2.0. Evaluations of model drift, temperature, salinity, mixed layer depth, and the Atlantic Meridional Overturning Circulation show that the model performs well in the FIO-ESM v2.0 OMIP-1 simulation. However, the summer sea ice extent of the Arctic and Antarctic is underestimated.
  • loading
  • Bailey D, Holland M, Hunke E, et al. 2011. Community Ice CodE (CICE) user’s guide version 4.0 released with CCSM 4.0. Tech rep, Los Alamos National Library
    Bao Ying, Song Zhenya, Qiao Fangli. 2020. FIO-ESM Version 2.0: Model description and evaluation. Journal of Geophysical Research: Oceans, 125(6): e2019JC016036. doi: 10.1029/2019JC016036
    Bernie D J, Guilyardi E, Madec G, et al. 2008. Impact of resolving the diurnal cycle in an ocean-atmosphere GCM: Part 2. A diurnally coupled CGCM. Climate Dynamics, 31(7–8): 909–925. doi: 10.1007/s00382-008-0429-z
    Chen Siyu, Qiao Fangli, Huang Chuanjiang, et al. 2018. Effects of the non-breaking surface wave-induced vertical mixing on winter mixed layer depth in subtropical regions. Journal of Geophysical Research: Oceans, 123(4): 2934–2944. doi: 10.1002/2017JC013038
    Clayson C A, Weitlich D. 2007. Variability of tropical diurnal sea surface temperature. Journal of Climate, 20(2): 334–352. doi: 10.1175/JCLI3999.1
    Craig A P, Vertenstein M, Jacob R. 2012. A new flexible coupler for earth system modeling developed for CCSM4 and CESM1. The International Journal of High Performance Computing Applications, 26(1): 31–42. doi: 10.1177/1094342011428141
    Dai Aiguo, Qian Taotao, Trenberth K E, et al. 2009. Changes in continental freshwater discharge from 1948 to 2004. Journal of Climate, 22(10): 2773–2792. doi: 10.1175/2008JCLI2592.1
    Dai Aiguo, Trenberth K E. 2002. Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. Journal of Hydrometeorology, 3(6): 660–687. doi: 10.1175/1525-7541(2002)003<0660:EOFDFC>2.0.CO;2
    Danabasoglu G, Large W G, Tribbia J J, et al. 2006. Diurnal coupling in the tropical oceans of CCSM3. Journal of Climate, 19(11): 2347–2365. doi: 10.1175/JCLI3739.1
    Danabasoglu G, Yeager S G, Bailey D, et al. 2014. North Atlantic simulations in coordinated ocean-ice reference experiments phase II (CORE-II): Part I. Mean states. Ocean Modelling, 73: 76–107. doi: 10.1016/j.ocemod.2013.10.005
    Danabasoglu G, Yeager S G, Kim W M, et al. 2016. North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II): Part II. Inter-annual to decadal variability. Ocean Modelling, 97: 65–90. doi: 10.1016/j.ocemod.2015.11.007
    de Boyer Montégut C, Madec G, Fischer A S, et al. 2004. Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. Journal of Geophysical Research: Oceans, 109(C12): C12003. doi: 10.1029/2004JC002378
    Downes S M, Farneti R, Uotila P, et al. 2015. An assessment of Southern Ocean water masses and sea ice during 1988–2007 in a suite of interannual CORE-II simulations. Ocean Modelling, 94: 67–94. doi: 10.1016/j.ocemod.2015.07.022
    Eyring V, Bony S, Meehl G A, et al. 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5): 1937–1958. doi: 10.5194/gmd-9-1937-2016
    Fetterer F, Knowles K, Meier W, et al. 2017. Sea ice index, version 3. Boulder, CO, USA: National Snow and Ice Data Center,
    Frajka-Williams E, Moat B I, Smeed D A, et al. 2021. Atlantic meridional overturning circulation observed by the RAPID-MOCHA-WBTS (RAPID-Meridional Overturning Circulation and Heatflux Array-Western Boundary Time Series) array at 26N from 2004 to 2020 (v2020.1). British Oceanographic Data Centre-Natural Environment Research Council,
    Griffies S M, Biastoch A, Böning C, et al. 2009. Coordinated ocean-ice reference experiments (COREs). Ocean Modelling, 26(1–2): 1–46. doi: 10.1016/j.ocemod.2008.08.007
    Griffies S M, Danabasoglu G, Durack P J, et al. 2016. OMIP contribution to CMIP6: Experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project. Geoscientific Model Development, 9(9): 3231–3296. doi: 10.5194/gmd-9-3231-2016
    Ham Y G, Kug J S, Kang I S, et al. 2010. Impact of diurnal atmosphere-ocean coupling on tropical climate simulations using a coupled GCM. Climate Dynamics, 34(6): 905–917. doi: 10.1007/s00382-009-0586-8
    Hersbach H, Bell B, Berrisford P, et al. 2019. Global reanalysis: Goodbye ERA-Interim, hello ERA5. ECMWF Newsletter 159, 17–24, https://www.ecmwf.int/en/newsletter/159/meteorology/global-reanalysis-goodbye-era-interim-hello-era5 [2019-04-01/2021-07-16]
    Huang Chuanjiang, Qiao Fangli, Dai Dejun. 2014. Evaluating CMIP5 simulations of mixed layer depth during summer. Journal of Geophysical Research: Oceans, 119(4): 2568–2582. doi: 10.1002/2013JC009535
    Huang Chuanjiang, Qiao Fangli, Shu Qi, et al. 2012. Evaluating austral summer mixed-layer response to surface wave-induced mixing in the southern Ocean. Journal of Geophysical Research: Oceans, 117(C11): C00J18. doi: 10.1029/2012JC007892
    Huang N E. 1971. Derivation of Stokes drift for a deep-water random gravity wave field. Deep-Sea Research and Oceanographic Abstracts, 18(2): 255–259. doi: 10.1016/0011-7471(71)90115-X
    Ilıcak M, Drange H, Wang Qiang, et al. 2016. An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part III: Hydrography and fluxes. Ocean Modelling, 100: 141–161. doi: 10.1016/j.ocemod.2016.02.004
    Kawai Y, Wada A. 2007. Diurnal sea surface temperature variation and its impact on the atmosphere and ocean: A review. Journal of Oceanography, 63(5): 721–744. doi: 10.1007/s10872-007-0063-0
    Kobayashi S, Ota Y, Harada Y, et al. 2015. The JRA-55 reanalysis: General specifications and basic characteristics. Journal of the Meteorological Society of Japan, 93(1): 5–48
    Large W G, McWilliams J C, Doney S C. 1994. Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics, 32(4): 363–403. doi: 10.1029/94RG01872
    Large W G, Yeager S G. 2009. The global climatology of an interannually varying air–sea flux data set. Climate Dynamics, 33(2–3): 341–364. doi: 10.1007/s00382-008-0441-3
    Locarnini R A, Mishonov A V, Antonov J I, et al. 2013. World ocean atlas 2013. Volume 1: Temperature. Silver Spring: National Oceanic and Atmospheric Administration
    Lumpkin R, Speer K. 2007. Global ocean meridional overturning. Journal of Physical Oceanography, 37(10): 2550–2562. doi: 10.1175/JPO3130.1
    Masson S, Terray P, Madec G, et al. 2012. Impact of intra-daily SST variability on ENSO characteristics in a coupled model. Climate Dynamics, 39(3–4): 681–707. doi: 10.1007/s00382-011-1247-2
    Qiao Fangli, Song Zhenya, Bao Ying, et al. 2013. Development and evaluation of an Earth System Model with surface gravity waves. Journal of Geophysical Research: Oceans, 118(9): 4514–4524. doi: 10.1002/jgrc.20327
    Qiao Fangli, Yuan Yeli, Ezer T, et al. 2010. A three-dimensional surface wave-ocean circulation coupled model and its initial testing. Ocean Dynamics, 60(5): 1339–1355. doi: 10.1007/s10236-010-0326-y
    Qiao Fangli, Yuan Yeli, Yang Yongzeng, et al. 2004. Wave-induced mixing in the upper ocean: Distribution and application to a global ocean circulation model. Geophysical Research Letters, 31(11): L11303
    Qiao Fangli, Zhao Wei, Yin Xunqiang, et al. 2016. A highly effective global surface wave numerical simulation with ultra-high resolution. In: SC’16: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. Salt Lake City, UT, USA: IEEE, 46–56
    Rascle N, Ardhuin F, Queffeulou P, et al. 2008. A global wave parameter database for geophysical applications: Part 1. Wave-current–turbulence interaction parameters for the open ocean based on traditional parameterizations. Ocean Modelling, 25(3–4): 154–171. doi: 10.1016/j.ocemod.2008.07.006
    Shu Qi, Qiao Fangli, Song Zhenya, et al. 2011. Improvement of MOM4 by including surface wave-induced vertical mixing. Ocean Modelling, 40(1): 42–51. doi: 10.1016/j.ocemod.2011.07.005
    Shu Qi, Wang Qiang, Su Jie, et al. 2019. Assessment of the Atlantic water layer in the Arctic Ocean in CMIP5 climate models. Climate Dynamics, 53(9–10): 5279–5291. doi: 10.1007/s00382-019-04870-6
    Smith R, Jones P, Briegleb B P, et al. 2010. The Parallel Ocean Program (POP) reference manual: ocean component of the Community Climate System Model (CCSM), https://www.cesm.ucar.edu/models/cesm2/ocean/doc/sci/POPRefManual.pdf [2010-03-23/2021-06-01]
    Song Z, Qiao F, Bao Y, et al. 2020. FIO-QLNM FIO-ESM2.0 model output prepared for CMIP6 OMIP OMIP 1. Version 20200324. Earth System Grid Federation,
    Tsujino H, Urakawa L S, Griffies S M, et al. 2020. Evaluation of global ocean-sea-ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2). Geoscientific Model Development, 13(8): 3643–3708. doi: 10.5194/gmd-13-3643-2020
    Tsujino H, Urakawa S, Nakano H, et al. 2018. JRA-55 based surface dataset for driving ocean-sea-ice models (JRA55-do). Ocean Modelling, 130: 79–139. doi: 10.1016/j.ocemod.2018.07.002
    Wang Shizhu, Wang Qiang, Shu Qi, et al. 2019. Improving the upper-ocean temperature in an ocean climate model (FESOM 1.4): Shortwave penetration versus mixing induced by nonbreaking surface waves. Journal of Advances in Modeling Earth Systems, 11(2): 545–557. doi: 10.1029/2018MS001494
    Wang Yonggang, Qiao Fangli, Fang Guohong, et al. 2010. Application of wave‐induced vertical mixing to the K profile parameterization scheme. Journal of Geophysical Research: Oceans, 115(C9): C09014
    Webster P J, Lukas R. 1992. TOGA COARE: the coupled ocean-atmosphere response experiment. Bulletin of the American Meteorological Society, 73(9): 1377–1416. doi: 10.1175/1520-0477(1992)073<1377:TCTCOR>2.0.CO;2
    Yang Xiaodan, Song Zhenya, Tseng Y H, et al. 2017. Evaluation of three temperature profiles of a sublayer scheme to simulate SST diurnal cycle in a global ocean general circulation model. Journal of Advances in Modeling Earth Systems, 9(4): 1994–2006. doi: 10.1002/2017MS000927
    Young I R, Zieger S, Babanin A V. 2011. Global trends in wind speed and wave height. Science, 332(6028): 451–455. doi: 10.1126/science.1197219
    Zhang Jinlun, Rothrock D A. 2003. Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates. Monthly Weather Review, 131(5): 845–861. doi: 10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2
    Zweng M M, Reagan J R, Antonov J I, et al. 2013. World ocean atlas 2013. Volume 2: Salinity. Silver Spring, ML, USA: National Oceanic and Atmospheric Administration
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (1903) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return