Citation: | Jing Li, Lin Mu, Linhao Zhong. Frequent central Pacific La Niña events may accelerate Arctic warming since the 1980s[J]. Acta Oceanologica Sinica, 2021, 40(11): 62-69. doi: 10.1007/s13131-021/1843-x |
[1] |
Abbot D S, Tziperman E. 2008. Sea ice, high-latitude convection, and equable climates. Geophysical Research Letters, 35(3): L03702
|
[2] |
Ashok K, Behera S K, Rao S A, et al. 2007. El Niño Modoki and its possible teleconnection. Journal of Geophysical Research: Oceans, 112: C11007. doi: 10.1029/2006JC003798
|
[3] |
Ashok K, Sabin T P, Swapna P, et al. 2012. Is a global warming signature emerging in the tropical Pacific?. Geophysical Research Letters, 39(2): L02701
|
[4] |
Bjerknes J. 1969. Atmospheric teleconnections from the equatorial Pacific. Monthly Weather Review, 97(3): 163–172. doi: 10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2
|
[5] |
Brands S. 2017. Which ENSO teleconnections are robust to internal atmospheric variability?. Geophysical Research Letters, 44(3): 1483–1493. doi: 10.1002/2016GL071529
|
[6] |
Budyko M I. 1969. The effect of solar radiation variations on the climate of the Earth. Tellus, 21(5): 611–619. doi: 10.3402/tellusa.v21i5.10109
|
[7] |
Cai Ming. 2005. Dynamical amplification of polar warming. Geophysical Research Letters, 32: L22710
|
[8] |
Cai Ming. 2006. Dynamical greenhouse-plus feedback and polar warming amplification: Part I. A dry radiative-transportive climate model. Climate Dynamics, 26(7): 661–675
|
[9] |
Cai Wenju, Borlace S, Lengaigne M, et al. 2014. Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Climate Change, 4: 111–116. doi: 10.1038/nclimate2100
|
[10] |
Cai Wenju, Santoso A, Wang Guojian, et al. 2015. ENSO and greenhouse warming. Nature Climate Change, 5(9): 849–859. doi: 10.1038/nclimate2743
|
[11] |
Capotondi A, Wittenberg A T, Newman M, et al. 2015. Understanding ENSO diversity. Bulletin of the American Meteorological Society, 96(6): 921–938. doi: 10.1175/BAMS-D-13-00117.1
|
[12] |
Cohen J. 2016. An observational analysis: Tropical relative to Arctic influence on midlatitude weather in the era of Arctic amplification. Geophysical Research Letters, 43(10): 5287–5294. doi: 10.1002/2016GL069102
|
[13] |
Cohen J, Screen J A, Furtado J C, et al. 2014. Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience, 7(9): 627–637. doi: 10.1038/ngeo2234
|
[14] |
Coumou D, Di Capua G, Vavrus S, et al. 2018. The influence of Arctic amplification on mid-latitude summer circulation. Nature Communications, 9: 2959. doi: 10.1038/s41467-018-05256-8
|
[15] |
Ding Qinghua, Wallace J M, Battisti D S, et al. 2014. Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland. Nature, 509(7499): 209–212. doi: 10.1038/nature13260
|
[16] |
Francis J A, Hunter E. 2006. New insight into the disappearing Arctic sea ice. Eos, 87(46): 509–511
|
[17] |
Francis J A, Vavrus S J. 2012. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophysical Research Letters, 39(6): L06801
|
[18] |
Ghatak D, Miller J. 2013. Implications for Arctic amplification of changes in the strength of the water vapor feedback. Journal of Geophysical Research: Atmospheres, 118(14): 7569–7578. doi: 10.1002/jgrd.50578
|
[19] |
Graversen R G. 2006. Do changes in the midlatitude circulation have any impact on the Arctic surface air temperature trend?. Journal of Climate, 19(20): 5422–5438. doi: 10.1175/JCLI3906.1
|
[20] |
Hall A. 2004. The role of surface albedo feedback in climate. Journal of Climate, 17(7): 1550–1568. doi: 10.1175/1520-0442(2004)017<1550:TROSAF>2.0.CO;2
|
[21] |
Holland M M, Bitz C M. 2003. Polar amplification of climate change in coupled models. Climate Dynamics, 21(3–4): 221–232. doi: 10.1007/s00382-003-0332-6
|
[22] |
Hoskins B J, Karoly D J. 1981. The steady linear response of a spherical atmosphere to thermal and orographic forcing. Journal of the Atmospheric Sciences, 38(6): 1179–1196. doi: 10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2
|
[23] |
Hu Chundi, Yang Song, Wu Qigang, et al. 2016. Shifting El Niño inhibits summer Arctic warming and Arctic sea-ice melting over the Canada Basin. Nature Communications, 7: 11721. doi: 10.1038/ncomms11721
|
[24] |
Huber M. 2008. A hotter greenhouse?. Science, 321(5887): 353–354. doi: 10.1126/science.1161170
|
[25] |
Jin Feifei. 1997. An equatorial ocean recharge paradigm for ENSO: Part I. Conceptual model. Journal of the Atmospheric Sciences, 54(7): 811–829. doi: 10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2
|
[26] |
Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77(3): 437–472. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
|
[27] |
Kay J E, L’Ecuyer T, Gettelman A, et al. 2008. The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum. Geophysical Research Letters, 35(8): L08503
|
[28] |
Krishnamurti T N, Krishnamurti R, Das S, et al. 2015. A pathway connecting the monsoonal heating to the rapid Arctic ice melt. Journal of the Atmospheric Sciences, 72(1): 5–34. doi: 10.1175/JAS-D-14-0004.1
|
[29] |
Larkin N K, Harrison D E. 2005. On the definition of El Niño and associated seasonal average U.S. weather anomalies. Geophysical Research Letters, 32(13): L13705. doi: 10.1029/2005GL022738
|
[30] |
Lee S. 2012. Testing of the tropically excited arctic warming mechanism (TEAM) with traditional El Niño and La Niña. Journal of Climate, 25(12): 4015–4022. doi: 10.1175/JCLI-D-12-00055.1
|
[31] |
Lee S, Feldstein S, Pollard D, et al. 2011. Do planetary wave dynamics contribute to equable climates?. Journal of Climate, 24(9): 2391–2404. doi: 10.1175/2011JCLI3825.1
|
[32] |
Lee S, Yoo C. 2014. On the causal relationship between poleward heat flux and the equator-to-pole temperature gradient: A cautionary tale. Journal of Climate, 27(17): 6519–6525. doi: 10.1175/JCLI-D-14-00236.1
|
[33] |
Li Jing, Mu Lin, Zhong Linhao. 2021. Distinct tropical Pacific sea surface temperature anomaly regimes enhanced under recent global warming. International Journal of Climatology, 41(2): 970–979. doi: 10.1002/joc.6712
|
[34] |
Li Zhiyu, Zhang Wenjun, Stuecker M F, et al. 2019. Different effects of two ENSO types on arctic surface temperature in boreal winter. Journal of Climate, 32(16): 4943–4961. doi: 10.1175/JCLI-D-18-0761.1
|
[35] |
Liebmann B, Smith C A. 1996. Description of a complete (Interpolated) outgoing longwave radiation dataset. Bulletin of the American Meteorological Society, 77(6): 1275–1277
|
[36] |
Lu Jianhua, Cai Ming. 2010. Quantifying contributions to polar warming amplification in an idealized coupled general circulation model. Climate Dynamics, 34(5): 669–687. doi: 10.1007/s00382-009-0673-x
|
[37] |
Neelin J D, Battisti D S, Hirst A C, et al. 1998. ENSO theory. Journal of Geophysical Research: Oceans, 103(C7): 14261–14290. doi: 10.1029/97JC03424
|
[38] |
Ogi M, Wallace J M. 2012. The role of summer surface wind anomalies in the summer Arctic sea ice extent in 2010 and 2011. Geophysical Research Letters, 39: L09704
|
[39] |
Overland J E, Dethloff K, Francis J A, et al. 2016. Nonlinear response of mid-latitude weather to the changing Arctic. Nature Climate Change, 6(11): 992–999. doi: 10.1038/nclimate3121
|
[40] |
Overland J E, Wang Muyin. 2010. Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus A: Dynamic Meteorology and Oceanography, 62(1): 1–9. doi: 10.1111/j.1600-0870.2009.00421.x
|
[41] |
Overland J E, Wood K R, Wang Muyin. 2011. Warm Arctic-cold continents: Climate impacts of the newly open Arctic sea. Polar Research, 30: 15787. doi: 10.3402/polar.v30i0.15787
|
[42] |
Pithan F, Mauritsen T. 2014. Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nature Geoscience, 7(3): 181–184. doi: 10.1038/ngeo2071
|
[43] |
Rayner A N, Parker D E, Horton E B, et al. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research: Atmospheres, 108(D14): 4407. doi: 10.1029/2002JD002670
|
[44] |
Sardeshmukh P D, Hoskins B J. 1988. The generation of global rotational flow by steady idealized tropical divergence. Journal of the Atmospheric Sciences, 45(7): 1228–1251. doi: 10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2
|
[45] |
Schopf P S, Suarez M J. 1988. Vacillations in a coupled ocean-atmosphere model. Journal of the Atmospheric Sciences, 45(3): 549–568. doi: 10.1175/1520-0469(1988)045<0549:VIACOM>2.0.CO;2
|
[46] |
Screen J A, Simmonds I. 2010. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464(7293): 1334–1337. doi: 10.1038/nature09051
|
[47] |
Sellers W D. 1969. A global climatic model based on the energy balance of the earth-atmosphere system. Journal of Applied Meteorology and Climatology, 8(3): 392–400. doi: 10.1175/1520-0450(1969)008<0392:AGCMBO>2.0.CO;2
|
[48] |
Serreze M C, Barry R G. 2011. Processes and impacts of Arctic amplification: A research synthesis. Global and Planetary Change, 77(1–2): 85–96. doi: 10.1016/j.gloplacha.2011.03.004
|
[49] |
Spicer R A, Ahlberg A, Herman A B, et al. 2008. The Late Cretaceous continental interior of Siberia: A challenge for climate models. Earth & Planetary Science Letters, 267(1–2): 228–235
|
[50] |
Stroeve J C, Serreze M C, Holland M M, et al. 2012. The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Climatic Change, 110(3-4): 1005–1027. doi: 10.1007/s10584-011-0101-1
|
[51] |
Stuecker M F, Bitz C M, Armour K C, et al. 2018. Polar amplification dominated by local forcing and feedbacks. Nature Climate Change, 8(12): 1076–1081. doi: 10.1038/s41558-018-0339-y
|
[52] |
Timmermann A, An S I, Kug J S, et al. 2018. El Niño-Southern Oscillation complexity. Nature, 559(7715): 535–545. doi: 10.1038/s41586-018-0252-6
|
[53] |
Watanabe M, Jin Feifei. 2003. A moist linear baroclinic model: Coupled dynamical-convective response to El Niño. Journal of Climate, 16(8): 1121–1139. doi: 10.1175/1520-0442(2003)16<1121:AMLBMC>2.0.CO;2
|
[54] |
Wu Bingyi. 2017. Winter atmospheric circulation anomaly associated with recent Arctic winter warm anomalies. Journal of Climate, 30(21): 8469–8479. doi: 10.1175/JCLI-D-17-0175.1
|
[55] |
Wyrtki K. 1975. El Niño—The dynamic response of the equatorial Pacific Ocean to atmospheric forcing. Journal of Physical Oceanography, 5(4): 572–584. doi: 10.1175/1520-0485(1975)005<0572:ENTDRO>2.0.CO;2
|
[56] |
Yeh S W, Kug J S, Dewitte B, et al. 2009. El Niño in a changing climate. Nature, 461(7263): 511–514. doi: 10.1038/nature08316
|
[57] |
Zhang Wenjun, Wang Ziqi, Stuecker M F, et al. 2019. Impact of ENSO longitudinal position on teleconnections to the NAO. Climate Dynamics, 52(1–2): 257–274. doi: 10.1007/s00382-018-4135-1
|
[58] |
Zhang Wenjun, Wang Lei, Xiang Baoqiang, et al. 2015. Impacts of two types of La Niña on the NAO during boreal winter. Climate Dynamics, 44(5–6): 1351–1366. doi: 10.1007/s00382-014-2155-z
|