Volume 40 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
Jing Li, Lin Mu, Linhao Zhong. Frequent central Pacific La Niña events may accelerate Arctic warming since the 1980s[J]. Acta Oceanologica Sinica, 2021, 40(11): 62-69. doi: 10.1007/s13131-021/1843-x
Citation: Jing Li, Lin Mu, Linhao Zhong. Frequent central Pacific La Niña events may accelerate Arctic warming since the 1980s[J]. Acta Oceanologica Sinica, 2021, 40(11): 62-69. doi: 10.1007/s13131-021/1843-x

Frequent central Pacific La Niña events may accelerate Arctic warming since the 1980s

doi: 10.1007/s13131-021/1843-x
Funds:  The Shenzhen Fundamental Research Program under contract No. JCYJ20200109110220482; the National Natural Science Foundation of China under contract No. U2006210; the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) under contract No. GML2019ZD0604.
More Information
  • Corresponding author: E-mail: mulin@szu.edu.cnzlh@mail.iap.ac.cn
  • Received Date: 2021-02-26
  • Accepted Date: 2021-04-21
  • Available Online: 2021-07-12
  • Publish Date: 2021-11-30
  • Including significant warming trend, Arctic climate changes also exhibit strong interannual variations in various fields, which is suggested to be related to El Niño and Southern Oscillation (ENSO) events. Previous studies have demonstrated the different impacts on the Arctic of central Pacific (CP) and eastern Pacific (EP) ENSO events, and suggested these impacts are largely of opposite sign for ENSO warm and cold phases. Our results illustrate asymmetrical changes for the cold and warm ENSO events, especially for the La Niña events. Compared to the past frequent basin-wide cooling La Niña events, since the 1980s the cooling center for the La Niña event has strengthened and moved westward along with the increasing frequency for the canonical and CP La Niña events. Contrary to the basin-wide cooling and canonical La Niña events, the frequent CP La Niña events induce significant warming from the Beaufort Sea to Greenland via the convection center moving northward over the western Pacific. Observation analysis and numerical experiments both suggest that the changes in La Niña type may also accelerate Arctic warming.
  • loading
  • [1]
    Abbot D S, Tziperman E. 2008. Sea ice, high-latitude convection, and equable climates. Geophysical Research Letters, 35(3): L03702
    [2]
    Ashok K, Behera S K, Rao S A, et al. 2007. El Niño Modoki and its possible teleconnection. Journal of Geophysical Research: Oceans, 112: C11007. doi: 10.1029/2006JC003798
    [3]
    Ashok K, Sabin T P, Swapna P, et al. 2012. Is a global warming signature emerging in the tropical Pacific?. Geophysical Research Letters, 39(2): L02701
    [4]
    Bjerknes J. 1969. Atmospheric teleconnections from the equatorial Pacific. Monthly Weather Review, 97(3): 163–172. doi: 10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2
    [5]
    Brands S. 2017. Which ENSO teleconnections are robust to internal atmospheric variability?. Geophysical Research Letters, 44(3): 1483–1493. doi: 10.1002/2016GL071529
    [6]
    Budyko M I. 1969. The effect of solar radiation variations on the climate of the Earth. Tellus, 21(5): 611–619. doi: 10.3402/tellusa.v21i5.10109
    [7]
    Cai Ming. 2005. Dynamical amplification of polar warming. Geophysical Research Letters, 32: L22710
    [8]
    Cai Ming. 2006. Dynamical greenhouse-plus feedback and polar warming amplification: Part I. A dry radiative-transportive climate model. Climate Dynamics, 26(7): 661–675
    [9]
    Cai Wenju, Borlace S, Lengaigne M, et al. 2014. Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Climate Change, 4: 111–116. doi: 10.1038/nclimate2100
    [10]
    Cai Wenju, Santoso A, Wang Guojian, et al. 2015. ENSO and greenhouse warming. Nature Climate Change, 5(9): 849–859. doi: 10.1038/nclimate2743
    [11]
    Capotondi A, Wittenberg A T, Newman M, et al. 2015. Understanding ENSO diversity. Bulletin of the American Meteorological Society, 96(6): 921–938. doi: 10.1175/BAMS-D-13-00117.1
    [12]
    Cohen J. 2016. An observational analysis: Tropical relative to Arctic influence on midlatitude weather in the era of Arctic amplification. Geophysical Research Letters, 43(10): 5287–5294. doi: 10.1002/2016GL069102
    [13]
    Cohen J, Screen J A, Furtado J C, et al. 2014. Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience, 7(9): 627–637. doi: 10.1038/ngeo2234
    [14]
    Coumou D, Di Capua G, Vavrus S, et al. 2018. The influence of Arctic amplification on mid-latitude summer circulation. Nature Communications, 9: 2959. doi: 10.1038/s41467-018-05256-8
    [15]
    Ding Qinghua, Wallace J M, Battisti D S, et al. 2014. Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland. Nature, 509(7499): 209–212. doi: 10.1038/nature13260
    [16]
    Francis J A, Hunter E. 2006. New insight into the disappearing Arctic sea ice. Eos, 87(46): 509–511
    [17]
    Francis J A, Vavrus S J. 2012. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophysical Research Letters, 39(6): L06801
    [18]
    Ghatak D, Miller J. 2013. Implications for Arctic amplification of changes in the strength of the water vapor feedback. Journal of Geophysical Research: Atmospheres, 118(14): 7569–7578. doi: 10.1002/jgrd.50578
    [19]
    Graversen R G. 2006. Do changes in the midlatitude circulation have any impact on the Arctic surface air temperature trend?. Journal of Climate, 19(20): 5422–5438. doi: 10.1175/JCLI3906.1
    [20]
    Hall A. 2004. The role of surface albedo feedback in climate. Journal of Climate, 17(7): 1550–1568. doi: 10.1175/1520-0442(2004)017<1550:TROSAF>2.0.CO;2
    [21]
    Holland M M, Bitz C M. 2003. Polar amplification of climate change in coupled models. Climate Dynamics, 21(3–4): 221–232. doi: 10.1007/s00382-003-0332-6
    [22]
    Hoskins B J, Karoly D J. 1981. The steady linear response of a spherical atmosphere to thermal and orographic forcing. Journal of the Atmospheric Sciences, 38(6): 1179–1196. doi: 10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2
    [23]
    Hu Chundi, Yang Song, Wu Qigang, et al. 2016. Shifting El Niño inhibits summer Arctic warming and Arctic sea-ice melting over the Canada Basin. Nature Communications, 7: 11721. doi: 10.1038/ncomms11721
    [24]
    Huber M. 2008. A hotter greenhouse?. Science, 321(5887): 353–354. doi: 10.1126/science.1161170
    [25]
    Jin Feifei. 1997. An equatorial ocean recharge paradigm for ENSO: Part I. Conceptual model. Journal of the Atmospheric Sciences, 54(7): 811–829. doi: 10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2
    [26]
    Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77(3): 437–472. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    [27]
    Kay J E, L’Ecuyer T, Gettelman A, et al. 2008. The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum. Geophysical Research Letters, 35(8): L08503
    [28]
    Krishnamurti T N, Krishnamurti R, Das S, et al. 2015. A pathway connecting the monsoonal heating to the rapid Arctic ice melt. Journal of the Atmospheric Sciences, 72(1): 5–34. doi: 10.1175/JAS-D-14-0004.1
    [29]
    Larkin N K, Harrison D E. 2005. On the definition of El Niño and associated seasonal average U.S. weather anomalies. Geophysical Research Letters, 32(13): L13705. doi: 10.1029/2005GL022738
    [30]
    Lee S. 2012. Testing of the tropically excited arctic warming mechanism (TEAM) with traditional El Niño and La Niña. Journal of Climate, 25(12): 4015–4022. doi: 10.1175/JCLI-D-12-00055.1
    [31]
    Lee S, Feldstein S, Pollard D, et al. 2011. Do planetary wave dynamics contribute to equable climates?. Journal of Climate, 24(9): 2391–2404. doi: 10.1175/2011JCLI3825.1
    [32]
    Lee S, Yoo C. 2014. On the causal relationship between poleward heat flux and the equator-to-pole temperature gradient: A cautionary tale. Journal of Climate, 27(17): 6519–6525. doi: 10.1175/JCLI-D-14-00236.1
    [33]
    Li Jing, Mu Lin, Zhong Linhao. 2021. Distinct tropical Pacific sea surface temperature anomaly regimes enhanced under recent global warming. International Journal of Climatology, 41(2): 970–979. doi: 10.1002/joc.6712
    [34]
    Li Zhiyu, Zhang Wenjun, Stuecker M F, et al. 2019. Different effects of two ENSO types on arctic surface temperature in boreal winter. Journal of Climate, 32(16): 4943–4961. doi: 10.1175/JCLI-D-18-0761.1
    [35]
    Liebmann B, Smith C A. 1996. Description of a complete (Interpolated) outgoing longwave radiation dataset. Bulletin of the American Meteorological Society, 77(6): 1275–1277
    [36]
    Lu Jianhua, Cai Ming. 2010. Quantifying contributions to polar warming amplification in an idealized coupled general circulation model. Climate Dynamics, 34(5): 669–687. doi: 10.1007/s00382-009-0673-x
    [37]
    Neelin J D, Battisti D S, Hirst A C, et al. 1998. ENSO theory. Journal of Geophysical Research: Oceans, 103(C7): 14261–14290. doi: 10.1029/97JC03424
    [38]
    Ogi M, Wallace J M. 2012. The role of summer surface wind anomalies in the summer Arctic sea ice extent in 2010 and 2011. Geophysical Research Letters, 39: L09704
    [39]
    Overland J E, Dethloff K, Francis J A, et al. 2016. Nonlinear response of mid-latitude weather to the changing Arctic. Nature Climate Change, 6(11): 992–999. doi: 10.1038/nclimate3121
    [40]
    Overland J E, Wang Muyin. 2010. Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus A: Dynamic Meteorology and Oceanography, 62(1): 1–9. doi: 10.1111/j.1600-0870.2009.00421.x
    [41]
    Overland J E, Wood K R, Wang Muyin. 2011. Warm Arctic-cold continents: Climate impacts of the newly open Arctic sea. Polar Research, 30: 15787. doi: 10.3402/polar.v30i0.15787
    [42]
    Pithan F, Mauritsen T. 2014. Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nature Geoscience, 7(3): 181–184. doi: 10.1038/ngeo2071
    [43]
    Rayner A N, Parker D E, Horton E B, et al. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research: Atmospheres, 108(D14): 4407. doi: 10.1029/2002JD002670
    [44]
    Sardeshmukh P D, Hoskins B J. 1988. The generation of global rotational flow by steady idealized tropical divergence. Journal of the Atmospheric Sciences, 45(7): 1228–1251. doi: 10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2
    [45]
    Schopf P S, Suarez M J. 1988. Vacillations in a coupled ocean-atmosphere model. Journal of the Atmospheric Sciences, 45(3): 549–568. doi: 10.1175/1520-0469(1988)045<0549:VIACOM>2.0.CO;2
    [46]
    Screen J A, Simmonds I. 2010. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464(7293): 1334–1337. doi: 10.1038/nature09051
    [47]
    Sellers W D. 1969. A global climatic model based on the energy balance of the earth-atmosphere system. Journal of Applied Meteorology and Climatology, 8(3): 392–400. doi: 10.1175/1520-0450(1969)008<0392:AGCMBO>2.0.CO;2
    [48]
    Serreze M C, Barry R G. 2011. Processes and impacts of Arctic amplification: A research synthesis. Global and Planetary Change, 77(1–2): 85–96. doi: 10.1016/j.gloplacha.2011.03.004
    [49]
    Spicer R A, Ahlberg A, Herman A B, et al. 2008. The Late Cretaceous continental interior of Siberia: A challenge for climate models. Earth & Planetary Science Letters, 267(1–2): 228–235
    [50]
    Stroeve J C, Serreze M C, Holland M M, et al. 2012. The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Climatic Change, 110(3-4): 1005–1027. doi: 10.1007/s10584-011-0101-1
    [51]
    Stuecker M F, Bitz C M, Armour K C, et al. 2018. Polar amplification dominated by local forcing and feedbacks. Nature Climate Change, 8(12): 1076–1081. doi: 10.1038/s41558-018-0339-y
    [52]
    Timmermann A, An S I, Kug J S, et al. 2018. El Niño-Southern Oscillation complexity. Nature, 559(7715): 535–545. doi: 10.1038/s41586-018-0252-6
    [53]
    Watanabe M, Jin Feifei. 2003. A moist linear baroclinic model: Coupled dynamical-convective response to El Niño. Journal of Climate, 16(8): 1121–1139. doi: 10.1175/1520-0442(2003)16<1121:AMLBMC>2.0.CO;2
    [54]
    Wu Bingyi. 2017. Winter atmospheric circulation anomaly associated with recent Arctic winter warm anomalies. Journal of Climate, 30(21): 8469–8479. doi: 10.1175/JCLI-D-17-0175.1
    [55]
    Wyrtki K. 1975. El Niño—The dynamic response of the equatorial Pacific Ocean to atmospheric forcing. Journal of Physical Oceanography, 5(4): 572–584. doi: 10.1175/1520-0485(1975)005<0572:ENTDRO>2.0.CO;2
    [56]
    Yeh S W, Kug J S, Dewitte B, et al. 2009. El Niño in a changing climate. Nature, 461(7263): 511–514. doi: 10.1038/nature08316
    [57]
    Zhang Wenjun, Wang Ziqi, Stuecker M F, et al. 2019. Impact of ENSO longitudinal position on teleconnections to the NAO. Climate Dynamics, 52(1–2): 257–274. doi: 10.1007/s00382-018-4135-1
    [58]
    Zhang Wenjun, Wang Lei, Xiang Baoqiang, et al. 2015. Impacts of two types of La Niña on the NAO during boreal winter. Climate Dynamics, 44(5–6): 1351–1366. doi: 10.1007/s00382-014-2155-z
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (44) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return