Volume 41 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
Xiaodong Wei, Weiwei Ding, Aiguo Ruan, Jie Zhang, Xiongwei Niu, Jiabiao Li, Yong Tang. Crustal structure and variation along the southern part of the Kyushu-Palau Ridge[J]. Acta Oceanologica Sinica, 2022, 41(1): 50-57. doi: 10.1007/s13131-021-1979-8
Citation: Xiaodong Wei, Weiwei Ding, Aiguo Ruan, Jie Zhang, Xiongwei Niu, Jiabiao Li, Yong Tang. Crustal structure and variation along the southern part of the Kyushu-Palau Ridge[J]. Acta Oceanologica Sinica, 2022, 41(1): 50-57. doi: 10.1007/s13131-021-1979-8

Crustal structure and variation along the southern part of the Kyushu-Palau Ridge

doi: 10.1007/s13131-021-1979-8
Funds:  The Scientific Research Fund of the Second Institute of Oceanography, MNR under contract No. QNYC1801; the National Natural Science Foundation of China under contract Nos 91858214, 41776053, 42025601, 42076047, 41890811 and 42006072; the National Program on Global Change and Air-Sea Interaction, Ministry of Natural Resources under contract No. GASI-02-PAC-DWZP02; the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) under contract No. 311020018.
More Information
  • Corresponding author: E-mail: wwding@sio.org.cn; E-mail: ruanag@sio.org.cn
  • Received Date: 2021-11-30
  • Accepted Date: 2021-12-16
  • Available Online: 2021-12-21
  • Publish Date: 2022-01-10
  • As an interoceanic arc, the Kyushu-Palau Ridge (KPR) is an exceptional place to study the subduction process and related magmatism through its interior velocity structure. However, the crustal structure and its nature of the KPR, especially the southern part with limited seismic data, are still in mystery. In order to unveil the crustal structure of the southern part of the KPR, this study uses deep reflection/refraction seismic data recorded by 24 ocean bottom seismometers to reconstruct a detailed P-wave velocity model along the ridge. Results show strong along-ridge variations either on the crustal velocity or the thickness of the KPR. P-wave velocity model is featured with (1) a crustal thickness between 6–12 km, with velocity increases from 4.0 km/s to 7.0 km/s from top to bottom; (2) high gradient (~1 s−1) in the upper crust but low one (<0.2 s−1) in the lower crust; (3) a slow mantle velocity between 7.2 km/s and 7.6 km/s in the uppermost mantle; and (4) inhomogenous velocity anomalies in the lower crust beneath seamounts. By comparing with the mature arc in the Izu-Bonin-Mariana arc in the east, this study suggests the southern part of KPR is a thicken oceanic crust rather than a typical arc crust. The origin of low velocities in the lower crust and upper mantle may be related with crustal differentiation, which implies advanced crustal evolution from normal oceanic crust to partly thicken oceanic crust. High velocities in the lower crust are related to the difference in magmatism.
  • loading
  • [1]
    Arculus R J, Ishizuka O, Bogus K A, et al. 2015. A record of spontaneous subduction initiation in the Izu-Bonin-Mariana arc. Nature Geoscience, 8(9): 728–733. doi: 10.1038/ngeo2515
    [2]
    Calvert A J. 2011. The seismic structure of island arc crust. In: Brown D, Ryan P D, eds. Arc-Continent Collision. Berlin, Heidelberg: Springer, 87–119
    [3]
    Canales J P, Sohn R A, deMartin B J. 2007. Crustal structure of the Trans-Atlantic Geotraverse (TAG) segment (Mid-Atlantic Ridge, 26°10′N): implications for the nature of hydrothermal circulation and detachment faulting at slow spreading ridges. Geochemistry, Geophysics, Geosystems, 8(8): Q08004,
    [4]
    Christensen N I, Mooney W D. 1995. Seismic velocity structure and composition of the continental crust: a global view. Journal of Geophysical Research: Solid Earth, 100(B6): 9761–9788. doi: 10.1029/95JB00259
    [5]
    Cosca M, Arculus R, Pearce J. 1998. 40Ar/39Ar and K-Ar geochronological age constraints for the inception and early evolution of the Izu-Bonin-Mariana arc system. Island Arc, 7(3): 579–595. doi: 10.1111/j.1440-1738.1998.00211.x
    [6]
    Deschamps A, Lallemand S. 2002. The West Philippine Basin: an Eocene to early Oligocene back arc basin opened between two opposed subduction zones. Journal of Geophysical Research: Solid Earth, 107(B12): 2322. doi: 10.1029/2001JB001706
    [7]
    Dunn R A, Lekić V, Detrick R S, et al. 2005. Three-dimensional seismic structure of the Mid-Atlantic Ridge (35°N): evidence for focused melt supply and lower crustal dike injection. Journal of Geophysical Research: Solid Earth, 110(B9): B09101. doi: 10.1029/2004JB003473
    [8]
    Franke D. 2013. Rifting, lithosphere breakup and volcanism: comparison of magma-poor and volcanic rifted margins. Marine and Petroleum Geology, 43: 63–87. doi: 10.1016/j.marpetgeo.2012.11.003
    [9]
    Hall R. 2002. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. Journal of Asian Earth Sciences, 20(4): 353–431. doi: 10.1016/S1367-9120(01)00069-4
    [10]
    Hilde T W C, Lee C S. 1984. Origin and evolution of the West Philippine Basin: a new interpretation. Tectonophysics, 102(1–4): 85–104. doi: 10.1016/0040-1951(84)90009-X
    [11]
    Holbrook W S, Lizarralde D, McGeary S, et al. 1999. Structure and composition of the Aleutian island arc and implications for continental crustal growth. Geology, 27(1): 31–34. doi: 10.1130/0091-7613(1999)027<0031:SACOTA>2.3.CO;2
    [12]
    Ishizuka O, Hickey-Vargas R, Arculus R J, et al. 2018. Age of Izu–Bonin–Mariana arc basement. Earth and Planetary Science Letters, 481: 80–90. doi: 10.1016/j.jpgl.2017.10.023
    [13]
    Ishizuka O, Taylor R N, Yuasa M, et al. 2011. Making and breaking an island arc: a new perspective from the Oligocene Kyushu-Palau arc, Philippine Sea. Geochemistry, Geophysics, Geosystems, 12(5): Q05005,
    [14]
    Jull M, Kelemen P B. 2001. On the conditions for lower crustal convective instability. Journal of Geophysical Research: Solid Earth, 106(B4): 6423–6446. doi: 10.1029/2000JB900357
    [15]
    Kodaira S, Sato T, Takahashi N, et al. 2007a. New seismological constraints on growth of continental crust in the Izu-Bonin intra-oceanic arc. Geology, 35(11): 1031–1034. doi: 10.1130/G23901A.1
    [16]
    Kodaira S, Sato T, Takahashi N, et al. 2007b. Seismological evidence for variable growth of crust along the Izu intraoceanic arc. Journal of Geophysical Research: Solid Earth, 112(B5): B05104
    [17]
    Korenaga J, Holbrook W S, Kent G M, et al. 2000. Crustal structure of the southeast Greenland margin from joint refraction and reflection seismic tomography. Journal of Geophysical Research: Solid Earth, 105(B9): 21591–21614. doi: 10.1029/2000JB900188
    [18]
    Leng W, Gurnis M. 2015. Subduction initiation at relic arcs. Geophysical Research Letters, 42(17): 7014–7021. doi: 10.1002/2015GL064985
    [19]
    Louden K E, Chian D, 1999. The deep structure of non-volcanic rifted continental margins. The Royal Society, 357: 767–805
    [20]
    Nishizawa A, Kaneda K, Katagiri Y, et al. 2007. Variation in crustal structure along the Kyushu-Palau Ridge at 15-21°N on the Philippine Sea plate based on seismic refraction profiles. Earth, Planets and Space, 59(6): e17–e20
    [21]
    Nishizawa A, Kaneda K, Oikawa M. 2016. Crust and uppermost mantle structure of the Kyushu-Palau Ridge, remnant arc on the Philippine Sea plate. Earth, Planets and Space, 68(1): 30,
    [22]
    Okino K, Kasuga S, Ohara Y. 1998. A new scenario of the Parece Vela Basin genesis. Marine Geophysical Research, 20(1): 21–40. doi: 10.1023/A:1004377422118
    [23]
    Okino Y, Shimakawa Y, Nagaoka S. 1994. Evolution of the Shikoku Basin. Journal of Geomagnetism and Geoelectricity, 46(6): 463–479. doi: 10.5636/jgg.46.463
    [24]
    Reston T J. 2009. The structure, evolution and symmetry of the magma-poor rifted margins of the North and Central Atlantic: a synthesis. Tectonophysics, 468(1−4): 6–27. doi: 10.1016/j.tecto.2008.09.002
    [25]
    Sdrolias M, Müller R D. 2006. Controls on back-arc basin formation. Geochemistry, Geophysics, Geosystems, 7(4): Q04016,
    [26]
    Stern R J. 2004. Subduction initiation: spontaneous and induced. Earth and Planetary Science Letters, 226(3−4): 275–292. doi: 10.1016/S0012-821X(04)00498-4
    [27]
    Stern R J, Gerya T. 2018. Subduction initiation in nature and models: a review. Tectonophysics, 746: 173–198. doi: 10.1016/j.tecto.2017.10.014
    [28]
    Suyehiro K, Takahashi N, Ariie Y, et al. 1996. Continental crust, crustal underplating, and low-Q upper mantle beneath an oceanic island arc. Science, 272(5260): 390–392. doi: 10.1126/science.272.5260.390
    [29]
    Takahashi N, Kodaira S, Tatsumi Y, et al. 2008. Structure and growth of the Izu-Bonin-Mariana arc crust: 1. Seismic constraint on crust and mantle structure of the Mariana arc–back-arc system. Journal of Geophysical Research: Solid Earth, 113(B1): B01104. doi: 10.1029/2007JB005120
    [30]
    Takahashi N, Kodaira S, Tatsumi Y, et al. 2009. Structural variations of arc crusts and rifted margins in the southern Izu-Ogasawara arc-back arc system. Geochemistry, Geophysics, Geosystems, 10(9): Q09X08,
    [31]
    Tang Xiaoyin, Zhang Gongcheng, Liang Jianshe, et al. 2013. Influence of igneous intrusions on the temperature field and organic maturity of the Changchang Sag, Qiongdongnan Basin, South China Sea. Chinese Journal of Geophysics, 56(1): 159–169
    [32]
    Tatsumi Y, Shukuno H, Tani K, et al. 2008. Structure and growth of the Izu-Bonin-Mariana arc crust: 2. Role of crust-mantle transformation and the transparent Moho in arc crust evolution. Journal of Geophysical Research: Solid Earth, 113(B2): B02203. doi: 10.1029/2007JB005121
    [33]
    Wan Kuiyuan, Xia Shaohong, Cao Jinghe, et al. 2017. Deep seismic structure of the northeastern South China Sea: origin of a high-velocity layer in the lower crust. Journal of Geophysical Research: Solid Earth, 122(4): 2831–2858. doi: 10.1002/2016JB013481
    [34]
    Wang T K, Chen M K, Lee C S, et al. 2006. Seismic imaging of the transitional crust across the northeastern margin of the South China Sea. Tectonophysics, 412(3−4): 237–254. doi: 10.1016/j.tecto.2005.10.039
    [35]
    Watts A B, Weissel J K. 1975. Tectonic history of the Shikoku marginal basin. Earth and Planetary Science Letters, 25(3): 239–250. doi: 10.1016/0012-821X(75)90238-1
    [36]
    Wei Xiaodong, Ding Weiwei, Christeson G L, et al. 2021. Mesozoic suture zone in the East China Sea: evidence from wide-angle seismic profiles. Tectonophysics, 820: 229116. doi: 10.1016/j.tecto.2021.229116
    [37]
    Wei Xiaodong, Ruan Aiguo, Zhao Minghui, et al. 2011. A wide-angle Obs profile across the Dongsha Uplift and Chaoshan Depression in the Mid-Northern South China Sea. Chinese Journal of Geophysics, 54(6): 1149–1160. doi: 10.1002/cjg2.1691
    [38]
    White R S. 1984. Atlantic oceanic crust: seismic structure of a slow-spreading ridge. Geological Society, London, Special Publications, 13(1): 101–111
    [39]
    White R S. 1992. Crustal structure and magmatism of North Atlantic continental margins. Journal of the Geological Society, 149(5): 841–854. doi: 10.1144/gsjgs.149.5.0841
    [40]
    White R S, Detrick R S, Sinha M C, et al. 1984. Anomalous seismic crustal structure of oceanic fracture zones. Geophysical Journal International, 79(3): 779–798. doi: 10.1111/j.1365-246X.1984.tb02868.x
    [41]
    Whitmarsh R B, Manatschal G, Minshull T A. 2001. Evolution of magma-poor continental margins from rifting to seafloor spreading. Nature, 413(6852): 150–154. doi: 10.1038/35093085
    [42]
    Whitmarsh R B, Pinheiro L M, Miles P R, et al. 1993. Thin crust at the western Iberia Ocean-Continent transition and ophiolites. Tectonics, 12(5): 1230–1239. doi: 10.1029/93TC00059
    [43]
    Yamazaki T, Seama K, Okino K, et al. 2003. Spreading process of the northern Mariana Trough: rifting-spreading transition at 22°N. Geochemistry, Geophysics, Geosystems, 4(9): 1075,
    [44]
    Yan Pin, Zhou Di, Liu Zhaoshu. 2001. A crustal structure profile across the northern continental margin of the South China Sea. Tectonophysics, 338(1): 1–21. doi: 10.1016/S0040-1951(01)00062-2
    [45]
    Zelt C, Forsyth D, 1994. Modeling wide-angle seismic data for crustal structure: Southeastern Grenville Province. Journal of Geophysical Research: Solid Earth, 99 (11), 11687–11704,
    [46]
    Zhang Zhengyi, Fan Jianke, Bai Yongliang, et al. 2018. Joint inversion of gravity-magnetic-seismic data of a typical profile in the China Sea-Western Pacific area. Chinese Journal of Geophysics, 61(7): 2871–2891
    [47]
    Zhang Jie, Li Jiabiao, Ding Weiwei. 2012. Reviews of the study on crustal structure and evolution of the Kyushu-Palau Ridge. Advances in Marine Science, 30(4): 595–607
    [48]
    Zhang Jie, Li Jiabiao, Ruan Aiguo, et al. 2020. Seismic structure of a postspreading seamount emplaced on the fossil spreading center in the Southwest Subbasin of the South China Sea. Journal of Geophysical Research: Solid Earth, 125(10): e2020JB019827. doi: 10.1029/2020JB019827
    [49]
    Zhao Minghui, Canales J P, Sohn R A. 2012. Three-dimensional seismic structure of a Mid-Atlantic Ridge segment characterized by active detachment faulting (Trans-Atlantic Geotraverse, 25°55′N-26°20′N). Geochemistry, Geophysics, Geosystems, 13(11): Q0AG13,
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (884) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return