Citation: | Xueqing Yang, Guiyan Han, Chunyong Ma, Chuanchuan Cao, Jie Yang, Ge Chen. Satellite observed shape-based overall rotation—A new aspect in eddy kinematics[J]. Acta Oceanologica Sinica, 2022, 41(5): 183-194. doi: 10.1007/s13131-021-1970-4 |
[1] |
Chelton D B, Gaube P, Schlax M G, et al. 2011a. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science, 334(6054): 328–332. doi: 10.1126/science.1208897
|
[2] |
Chelton D B, Schlax M G, Samelson R M. 2011b. Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2): 167–216. doi: 10.1016/j.pocean.2011.01.002
|
[3] |
Chelton D B, Schlax M G, Samelson R M, et al. 2007. Global observations of large oceanic eddies. Geophysical Research Letters, 34(15): L15606
|
[4] |
Chen Ge, Han Guiyan. 2019. Contrasting short-lived with long-lived mesoscale eddies in the global ocean. Journal of Geophysical Research: Oceans, 124(5): 3149–3167. doi: 10.1029/2019JC014983
|
[5] |
Chen Ge, Han Guiyan, Yang Xueqing. 2019. On the intrinsic shape of oceanic eddies derived from satellite altimetry. Remote Sensing of Environment, 228: 75–89. doi: 10.1016/j.rse.2019.04.011
|
[6] |
Dong Changming, McWilliams J C, Liu Yu, et al. 2014. Global heat and salt transports by eddy movement. Nature Communications, 5(1): 3294. doi: 10.1038/ncomms4294
|
[7] |
Dufau C, Orsztynowicz M, Dibarboure G, et al. 2016. Mesoscale resolution capability of altimetry: present and future. Journal of Geophysical Research: Oceans, 121(7): 4910–4927. doi: 10.1002/2015JC010904
|
[8] |
Early J J, Samelson R M, Chelton D B. 2011. The evolution and propagation of quasigeostrophic ocean eddies. Journal of Physical Oceanography, 41(8): 1535–1555. doi: 10.1175/2011JPO4601.1
|
[9] |
Faghmous J H, Frenger I, Yao Yuanshun, et al. 2015. A daily global mesoscale ocean eddy dataset from satellite altimetry. Scientific Data, 2(1): 150028. doi: 10.1038/sdata.2015.28
|
[10] |
Fernandes A M. 2009. Study on the automatic recognition of oceanic eddies in satellite images by ellipse center detection—the Iberian coast case. IEEE Transactions on Geoscience and Remote Sensing, 47(8): 2478–2491. doi: 10.1109/TGRS.2009.2014155
|
[11] |
Frenger I, Gruber N, Knutti R, et al. 2013. Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nature Geoscience, 6(8): 608–612. doi: 10.1038/ngeo1863
|
[12] |
Fu L L, Chelton D B, Le Traon P Y, et al. 2010. Eddy dynamics from satellite altimetry. Oceanography, 23(4): 14–25. doi: 10.5670/oceanog.2010.02
|
[13] |
Gruber N, Lachkar Z, Frenzel H, et al. 2011. Eddy-induced reduction of biological production in eastern boundary upwelling systems. Nature Geoscience, 4(11): 787–792. doi: 10.1038/ngeo1273
|
[14] |
Jayne S R, Marotzke J. 2002. The oceanic eddy heat transport. Journal of Physical Oceanography, 32(12): 3328–3345. doi: 10.1175/1520-0485(2002)032<3328:TOEHT>2.0.CO;2
|
[15] |
Le Vu B, Stegner A, Arsouze T. 2018. Angular Momentum Eddy Detection and tracking Algorithm (AMEDA) and its application to coastal eddy formation. Journal of Atmospheric and Oceanic Technology, 35(4): 739–762. doi: 10.1175/JTECH-D-17-0010.1
|
[16] |
Liu Yingjie, Chen Ge, Sun Miao, et al. 2016. A parallel SLA-based algorithm for global mesoscale eddy identification. Journal of Atmospheric and Oceanic Technology, 33(12): 2743–2754. doi: 10.1175/JTECH-D-16-0033.1
|
[17] |
Mason E, Pascual A, McWilliams J C. 2014. A new sea surface height–based code for oceanic mesoscale eddy tracking. Journal of Atmospheric and Oceanic Technology, 31(5): 1181–1188. doi: 10.1175/JTECH-D-14-00019.1
|
[18] |
Sun Miao, Tian Fenglin, Liu Yingjie, et al. 2017. An improved automatic algorithm for global eddy tracking using satellite altimeter data. Remote Sensing, 9(3): 206. doi: 10.3390/rs9030206
|
[19] |
Tamarin T, Maddison J R, Heifetz E, et al. 2016. A geometric interpretation of eddy Reynolds stresses in barotropic ocean jets. Journal of Physical Oceanography, 46(8): 2285–2307. doi: 10.1175/JPO-D-15-0139.1
|
[20] |
Waterman S, Lilly J M. 2015. Geometric decomposition of eddy feedbacks in barotropic systems. Journal of Physical Oceanography, 45(4): 1009–1024. doi: 10.1175/JPO-D-14-0177.1
|
[21] |
Yi Jiawei, Liu Zhang, Du Yunyan, et al. 2014. A Gaussian-surface-based approach to identifying oceanic multi-eddy structures from satellite altimeter datasets. In: Proceedings of the 22nd International Conference on Geoinformatics. Kaohsiung, China: IEEE,1–5
|
[22] |
Zhang Zhengguang, Qiu Bo, Klein P, et al. 2019. The influence of geostrophic strain on oceanic ageostrophic motion and surface chlorophyll. Nature Communications, 10(1): 2838. doi: 10.1038/s41467-019-10883-w
|
[23] |
Zhang Zhengguang, Wang Wei, Qiu Bo. 2014. Oceanic mass transport by mesoscale eddies. Science, 345(6194): 322–324. doi: 10.1126/science.1252418
|