Citation: | Xusiyang Shen, Jinping Zhao, Xiaoyu Wang, Tore Hattermann, Wenqi Shi, Long Lin, Ping Chen. Export of Greenland Sea water across the Mohn Ridge induced by summer storms[J]. Acta Oceanologica Sinica, 2023, 42(2): 17-28. doi: 10.1007/s13131-021-1964-2 |
Aagaard K, Greisman P. 1975. Toward new mass and heat budgets for the Arctic Ocean. Journal of Geophysical Research, 80(27): 3821–3827. doi: 10.1029/JC080i027p03821
|
Beszczynska-Möller A, Woodgate R A, Lee C M, et al. 2011. A synthesis of exchanges through the main oceanic gateways to the Arctic Ocean. Oceanography, 24(3): 82–99. doi: 10.5670/oceanog.2011.59
|
Blindheim J. 1990. Arctic intermediate water in the Norwegian Sea. Deep-Sea Research Part A. Oceanographic Research Papers, 37(9): 1475–1489
|
Blindheim J, Ådlandsvik B. 1995. Episodic formation of intermediate water along the Greenland Sea Arctic Front. ICES Journal of Marine Science, 6: 1–11
|
Blindheim J, Rey F. 2004. Water-mass formation and distribution in the Nordic seas during the 1990s. ICES Journal of Marine Science, 61(5): 846–863. doi: 10.1016/j.icesjms.2004.05.003
|
Bosse A, Fer I. 2019. Mean structure and seasonality of the Norwegian Atlantic front current along the Mohn Ridge from repeated glider transects. Geophysical Research Letters, 46(22): 13170–13179. doi: 10.1029/2019GL084723
|
Budéus G, Ronski S. 2009. An integral view of the hydrographic development in the Greenland Sea over a decade. The Open Oceanography Journal, 3: 8–39. doi: 10.2174/1874252100903010008
|
Codiga D L. 2011. Unified Tidal Analysis and Prediction Using the UTide Matlab Functions. Narragansett: Graduate School of Oceanography, University of Rhode Island
|
De Steur L, Hansen E, Mauritzen C, et al. 2014. Impact of recirculation on the East Greenland Current in Fram Strait: results from moored current meter measurements between 1997 and 2009. Deep-Sea Research Part I: Oceanographic Research Papers, 92: 26–40. doi: 10.1016/j.dsr.2014.05.018
|
Fahrbach E, Meincke J, Østerhus S, et al. 2001. Direct measurements of volume transports through Fram Strait. Polar Research, 20(2): 217–224. doi: 10.1111/j.1751-8369.2001.tb00059.x
|
Fieg K, Gerdes R, Fahrbach E, et al. 2010. Simulation of oceanic volume transports through Fram Strait 1995–2005. Ocean Dynamics, 60(3): 491–502. doi: 10.1007/s10236-010-0263-9
|
García-Ibáñez M I, Pérez F F, Lherminier P, et al. 2018. Water mass distributions and transports for the 2014 GEOVIDE cruise in the North Atlantic. Biogeosciences, 15(7): 2075–2090. doi: 10.5194/bg-15-2075-2018
|
Hansen B, Østerhus S. 2000. North Atlantic–Nordic seas exchanges. Progress in Oceanography, 45(2): 109–208. doi: 10.1016/S0079-6611(99)00052-X
|
Harden B E, Pickart R S, Valdimarsson H, et al. 2016. Upstream sources of the Denmark Strait Overflow: Observations from a high-resolution mooring array. Deep-Sea Research Part I: Oceanographic Research Papers, 112: 94–112. doi: 10.1016/j.dsr.2016.02.007
|
Håvik L, Pickart R S, Våge K, et al. 2017. Evolution of the east Greenland Current from Fram Strait to Denmark Strait: synoptic measurements from summer 2012. Journal of Geophysical Research: Oceans, 122(3): 1974–1994. doi: 10.1002/2016JC012228
|
Hermann F. 1967. The T-S diagram analysis of the water masses over the Iceland-Faroe ridge and in the Faroe bank channel (Overflow 60). Rapports et Procès-Verbaux des Réunions du Conseil International pour l’Exploration de la Mer, 157: 139–149
|
Hersbach H, Bell B, Berrisford P, et al. 2018. ERA5 hourly data on single levels from 1959 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview[2021-3-1]
|
Jeansson E, Olsen A, Jutterström S. 2017. Arctic intermediate water in the Nordic seas, 1991–2009. Deep-Sea Research Part I: Oceanographic Research Papers, 128: 82–97. doi: 10.1016/j.dsr.2017.08.013
|
Jochumsen K, Quadfasel D, Valdimarsson H, et al. 2012. Variability of the Denmark strait overflow: moored time series from 1996–2011. Journal of Geophysical Research: Oceans, 117(C12): C12003
|
Karspeck A R, Stammer D, Köhl A, et al. 2017. Comparison of the Atlantic meridional overturning circulation between 1960 and 2007 in six ocean reanalysis products. Climate Dynamics, 49(3): 957–982. doi: 10.1007/s00382-015-2787-7
|
Köhl A. 2010. Variable source regions of Denmark Strait and Faroe Bank Channel overflow waters. Tellus A: Dynamic Meteorology and Oceanography, 62(4): 551–568. doi: 10.1111/j.1600-0870.2010.00454.x
|
Marnela M, Rudels B, Houssais M N, et al. 2013. Recirculation in the Fram Strait and transports of water in and north of the Fram Strait derived from CTD data. Ocean Science, 9(3): 499–519. doi: 10.5194/os-9-499-2013
|
Olsen S M, Shaffer G, Bjerrum C J. 2005. Ocean oxygen isotope constraints on mechanisms for millennial-scale climate variability. Paleoceanography and Paleoclimatology, 2005,20(1): PA1014
|
Østerhus S, Gammelsrød T. 1999. The abyss of the Nordic seas is warming. Journal of Climate, 12(11): 3297–3304. doi: 10.1175/1520-0442(1999)012<3297:TAOTNS>2.0.CO;2
|
Østerhus S, Woodgate R, Valdimarsson H, et al. 2019. Arctic Mediterranean exchanges: a consistent volume budget and trends in transports from two decades of observations. Ocean Science, 15(2): 379–399. doi: 10.5194/os-15-379-2019
|
Quadfasel D, Käse R. 2007. Present-day manifestation of the Nordic seas overflows. In: Schmittner A, Chiang J C H, Hemming S R, eds. Ocean Circulation: Mechanisms and Impacts-Past and Future Changes of Meridional Overturning. Washington, DC: American Geophysical Union (AGU), 75–89
|
Rudels B, Fahrbach E, Meincke J, et al. 2002. The east Greenland Current and its contribution to the Denmark Strait overflow. ICES Journal of Marine Science, 59(6): 1133–1154. doi: 10.1006/jmsc.2002.1284
|
Sælen O H. 1990. On the exchange of bottom water between the Greenland and Norwegian seas. Geophysica, 3: 133–144
|
Schauer U, Fahrbach E, Osterhus S, et al. 2004. Arctic warming through the Fram Strait: oceanic heat transport from 3 years of measurements. Journal of Geophysical Research: Oceans, 109(C6): C06026
|
Serreze M C, Carse F, Barry R G, et al. 1997. Icelandic low cyclone activity: Climatological features, linkages with the NAO, and relationships with recent changes in the Northern Hemisphere circulation. Journal of Climate, 10(3): 453–464
|
Shao Qiuli, Zhao Jinping, Drinkwater K F, et al. 2019. Internal overflow in the Nordic seas and the cold reservoir in the northern Norwegian Basin. Deep-Sea Research Part I: Oceanographic Research Papers, 148: 67–79. doi: 10.1016/j.dsr.2019.04.012
|
Smethie Jr W M, Chipman D W, Swift J H, et al. 1988. Chlorofluoromethanes in the Arctic mediterranean seas: evidence for formation of bottom water in the Eurasian Basin and deep-water exchange through Fram Strait. Deep-Sea Research Part A. Oceanographic Research Papers, 35(3): 347–369
|
Stone M D. 1996. The Jan Mayen Current from 1989 and 1990 summer data [dissertation]. Monterey : Naval Postgraduate School
|
Swift J H, Koltermann K P. 1988. The origin of Norwegian Sea deep water. Journal of Geophysical Research: Oceans, 93(C4): 3563–3569. doi: 10.1029/JC093iC04p03563
|
Voet G, Quadfasel D, Mork K A, et al. 2010. The mid-depth circulation of the Nordic seas derived from profiling float observations. Tellus A: Dynamic Meteorology and Oceanography, 62(4): 516–529. doi: 10.1111/j.1600-0870.2010.00444.x
|
Woodgate R A, Fahrbach E, Rohardt G. 1999. Structure and transports of the East Greenland Current at 75°N from moored current meters. Journal of Geophysical Research: Oceans, 104(C8): 18059–18072. doi: 10.1029/1999JC900146
|
Ypma S L, Georgiou S, Dugstad J S, et al. 2020. Pathways and water mass transformation along and across the Mohn-Knipovich Ridge in the Nordic seas. Journal of Geophysical Research: Oceans, 125(9): e2020JC016075
|
1. | Luis Salvador Monticelli, Gabriella Caruso, Filippo Azzaro, et al. Microbial Parameters as Predictors of Heterotrophic Prokaryotic Production in the Ross Sea Epipelagic Waters (Antarctica) during the Austral Summer. Journal of Marine Science and Engineering, 2022, 10(12): 1812. doi:10.3390/jmse10121812 | |
2. | C. Pamela Orta-Ponce, Tamara Rodríguez-Ramos, Mar Nieto-Cid, et al. Empirical leucine-to-carbon conversion factors in north-eastern Atlantic waters (50–2000 m) shaped by bacterial community composition and optical signature of DOM. Scientific Reports, 2021, 11(1) doi:10.1038/s41598-021-03790-y | |
3. | Xiangfu Li, Jie Xu, Zhen Shi, et al. Response of Bacterial Metabolic Activity to the River Discharge in the Pearl River Estuary: Implication for CO2 Degassing Fluxes. Frontiers in Microbiology, 2019, 10 doi:10.3389/fmicb.2019.01026 | |
4. | Zhen Shi, Jie Xu, Xiangfu Li, et al. Links of Extracellular Enzyme Activities, Microbial Metabolism, and Community Composition in the River‐Impacted Coastal Waters. Journal of Geophysical Research: Biogeosciences, 2019, 124(11): 3507. doi:10.1029/2019JG005095 | |
5. | Jie Xu, Xiangfu Li, Zhen Shi, et al. Bacterial Carbon Cycling in the River Plume in the Northern South China Sea During Summer. Journal of Geophysical Research: Oceans, 2018, 123(11): 8106. doi:10.1029/2018JC014277 |