Volume 40 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
Xianrong Zhang, Jianming Gong, Zhilei Sun, Jing Liao, Bin Zhai, Libo Wang, Xilin Zhang, Cuiling Xu, Wei Geng. Pore-water geochemistry in methane-seep sediments of the Makran accretionary wedge off Pakistan: Possible link to subsurface methane hydrate[J]. Acta Oceanologica Sinica, 2021, 40(9): 23-32. doi: 10.1007/s13131-021-1899-7
Citation: Xianrong Zhang, Jianming Gong, Zhilei Sun, Jing Liao, Bin Zhai, Libo Wang, Xilin Zhang, Cuiling Xu, Wei Geng. Pore-water geochemistry in methane-seep sediments of the Makran accretionary wedge off Pakistan: Possible link to subsurface methane hydrate[J]. Acta Oceanologica Sinica, 2021, 40(9): 23-32. doi: 10.1007/s13131-021-1899-7

Pore-water geochemistry in methane-seep sediments of the Makran accretionary wedge off Pakistan: Possible link to subsurface methane hydrate

doi: 10.1007/s13131-021-1899-7
Funds:  The National Natural Science Foundation of China under contract Nos 41606087, 91858208, and 42076069; the Taishan Scholar Special Experts Project under contract No. TS201712079; the National Key Basic Research and Development Program of China under contract No. 2017YFC0307704; the Marine Geological Survey Program of China Geological Survey under contract Nos DD20190518 and DD20190819.
More Information
  • Cold seeps are pervasive along the continental margin worldwide, and are recognized as hotspots for elemental cycling pathway on Earth. In this study, analyses of pore water geochemical compositions of one ~400 cm piston core (S3) and the application of a mass balance model are conducted to assess methane-associated biogeochemical reactions and uncover the relationship of methane in shallow sediment with gas hydrate reservoir at the Makran accretionary wedge off Pakistan. The results revealed that approximately 77% of sulfate is consumed by the predominant biogeochemical process of anaerobic oxidation of methane. However, the estimated sulfate-methane interface depth is ~400 cm below sea floor with the methane diffusive flux of 0.039 mol/(m2·a), suggesting the activity of methane seepage. Based on the δ13CDIC mass balance model combined with the contribution proportion of different dissolved inorganic carbon sources, this study calculated the δ13C of the exogenous methane to be −57.9‰, indicating that the exogenous methane may be a mixture source, including thermogenic and biogenic methane. The study of pore water geochemistry at Makran accretionary wedge off Pakistan may have considerable implications for understanding the specific details on the dynamics of methane in cold seeps and provide important evidence for the potential occurrence of subsurface gas hydrate in this area.
  • loading
  • [1]
    Bayon G, Pierre C, Etoubleau J, et al. 2007. Sr/Ca and Mg/Ca ratios in Niger Delta sediments: implications for authigenic carbonate genesis in cold seep environments. Marine Geology, 241(1–4): 93–109
    [2]
    Berner R A. 1980. Early Diagenesis: A Theoretical Approach. Princeton: Princeton University Press
    [3]
    Berner R A, Scott M R, Thomlinson C. 1970. Carbonate alkalinity in the pore waters of anoxic marine sediments. Limnology and Oceanography, 15(4): 544–549. doi: 10.4319/lo.1970.15.4.0544
    [4]
    Boetius A, Ravenschlag K, Schubert C J, et al. 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407(6804): 623–626. doi: 10.1038/35036572
    [5]
    Boetius A, Wenzhöfer F. 2013. Seafloor oxygen consumption fuelled by methane from cold seeps. Nature Geoscience, 6(9): 725–734. doi: 10.1038/ngeo1926
    [6]
    Bohrmann G. 2008. Report and Preliminary Results of R/V Meteor Cruise M74/3, Fujairah Male, 30 October−28 November, 2007. Cold Seeps of the Makran Subduction Zone (Continental Margin of Pakistan). Bremen: Universität Bremen
    [7]
    Borowski W S, Çagatay N, Ternois Y, et al. 2000. Data report: carbon isotopic composition of dissolved CO2, CO2 gas, and methane, Blake-Bahama Ridge and northeast Bermuda Rise, ODP Leg 172. In: Keigwin L D, Rio D, Acton G D, et al., eds. Proceedings of the Ocean Drilling Program, Scientific Results, 172: 1–16, doi: 10.2973/odp.proc.sr.172.201.2000
    [8]
    Borowski W S, Paull C K, Ussler III W. 1996. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate. Geology, 24(7): 655–658. doi: 10.1130/0091-7613(1996)024<0655:MPWSPI>2.3.CO;2
    [9]
    Borowski W S. 2004. A review of methane and gas hydrates in the dynamic, stratified system of the Blake Ridge region, offshore southeastern North America. Chemical Geology, 205(3−4): 311–346
    [10]
    Boudreau B P. 1997. Diagenetic Models and Their Implementation: Modelling Transport and Reactions in Aquatic Sediments. Berlin: Springer
    [11]
    Byrne D E, Sykes L R, Davis D M. 1992. Great thrust earthquakes and aseismic slip along the plate boundary of the Makran Subduction Zone. Journal of Geophysical Research, 97(B1): 449–478. doi: 10.1029/91JB02165
    [12]
    Cangemi M, Di Leonardo R, Bellanca A, et al. 2010. Geochemistry and mineralogy of sediments and authigenic carbonates from the Malta Plateau, Strait of Sicily (Central Mediterranean): relationships with mud/fluid release from a mud volcano system. Chemical Geology, 276(3−4): 294–308
    [13]
    Ceramicola S, Dupré S, Somoza L, et al. 2018. Cold seep systems. In: Micallef A, Krastel S, Savini A, eds. Submarine Geomorphology. Cham: Springer, 367–387
    [14]
    Chen Yifeng, Ussler III W, Haflidason H, et al. 2010. Sources of methane inferred from pore-water δ13C of dissolved inorganic carbon in pockmark G11, offshore Mid-Norway. Chemical Geology, 275(3–4): 127–138
    [15]
    Chuang Peichuan, Dale A W, Wallmann K, et al. 2013. Relating sulfate and methane dynamics to geology: accretionary prism offshore SW Taiwan. Geochemistry, Geophysics, Geosystems, 14(7): 2523–2545. doi: 10.1002/ggge.20168
    [16]
    Crémière A, Lepland A, Chand S, et al. 2016. Timescales of methane seepage on the Norwegian margin following collapse of the Scandinavian Ice Sheet. Nature Communications, 7(1): 11509. doi: 10.1038/ncomms11509
    [17]
    Delisle G, Berner U. 2002. Gas hydrates acting as cap rock to fluid discharge in the Makran accretionary prism?. In: Clift P D, Kroon D, Gaedicke C, et al., eds. The Tectonic and Climatic Evolution of the Arabian Sea Region. London: Geological Society, 137–146
    [18]
    Delisle G, von Rad U, Andruleit H, et al. 2002. Active mud volcanoes on-and offshore eastern Makran, Pakistan. International Journal of Earth Sciences, 91(1): 93–110. doi: 10.1007/s005310100203
    [19]
    Dickens G R. 2003. CLIMATE: a methane trigger for rapid warming?. Science, 299(5609): 1017–1017. doi: 10.1126/science.1080789
    [20]
    Egeberg P K, Dickens G R. 1999. Thermodynamic and pore water halogen constraints on gas hydrate distribution at ODP site 997 (Blake Ridge). Chemical Geology, 153(1–4): 53–79
    [21]
    Ellouz-Zimmermann N, Battani A, Deville E, et al. 2008. Impact of coeval tectonic and sedimentary-driven tectonics on the development of overpressure cells, on the sealing, and fluid migration—Petroleum potential and environmental risks of the Makran Accretionary Prism in Pakistan. Himalayan Journal of Sciences, 5(7): 50–51
    [22]
    Feng Dong, Qiu Jianwen, Hu Yu, et al. 2018. Cold seep systems in the South China Sea: an overview. Journal of Asian Earth Sciences, 168: 3–16. doi: 10.1016/j.jseaes.2018.09.021
    [23]
    Fischer D, Bohrmann G, Zabel M, et al. 2009. Geochemical zonation and characteristics of cold seeps along the Makran continental margin off Pakistan. In: EGU General Assembly. Vienna: EGU
    [24]
    Fischer D, Sahling H, Nöthen K, et al. 2011. Interaction between hydrocarbon seepage, chemosynthetic communities, and bottom water redox at cold seeps of the Makran accretionary prism: insights from habitat-specific pore water sampling and modeling. Biogeosciences, 9(6): 2013–2031
    [25]
    Fischer D, Mogollón J M, Strasser M, et al. 2013. Subduction zone earthquake as potential trigger of submarine hydrocarbon seepage. Nature Geoscience, 6(8): 647–651. doi: 10.1038/ngeo1886
    [26]
    Gehre M, Strauch G. 2003. High-temperature elemental analysis and pyrolysis techniques for stable isotope analysis. Rapid Communications in Mass Spectrom, 17(13): 1497–1503. doi: 10.1002/rcm.1076
    [27]
    Gontharet S, Pierre C, Blanc-Valleron M M, et al. 2007. Nature and origin of diagenetic carbonate crusts and concretions from mud volcanoes and pockmarks of the Nile deep-sea fan (eastern Mediterranean Sea). Deep-Sea Research Part II: Topical Studies in Oceanography, 54(11–13): 1292–1311
    [28]
    Graca B, Witek Z, Burska D, et al. 2006. Pore water phosphate and ammonia below the permanent halocline in the South-eastern Baltic Sea and their benthic fluxes under anoxic conditions. Journal of Marine Systems, 63(3–4): 141–154
    [29]
    Haas A, Peckmann J, Elvert M, et al. 2010. Patterns of carbonate authigenesis at the Kouilou pockmarks on the Congo deep-sea fan. Marine Geology, 268(1–4): 129–136
    [30]
    Haese R R, Meile C, Van Cappellen P. et al 2003. Carbon geochemistry of cold seeps: methane fluxes and transformation in sediments from Kazan mud volcano, eastern Mediterranean Sea. Earth and Planetary Science Letters, 212(3–4): 361–375
    [31]
    Henrichs S M, Reeburgh W S. 1987. Anaerobic mineralization of marine sediment organic matter: rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrobiology Journal, 5(3–4): 191–237
    [32]
    Hesse R. 2003. Pore water anomalies of submarine gas-hydrate zones as tool to assess hydrate abundance and distribution in the subsurface: what have we learned in the past decade?. Earth-Science Reviews, 61(1–2): 149–179
    [33]
    Hu Yu, Feng Dong, Liang Qianyong, et al. 2015. Impact of anaerobic oxidation of methane on the geochemical cycle of redox-sensitive elements at cold-seep sites of the northern South China Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 122: 84–94. doi: 10.1016/j.dsr2.2015.06.012
    [34]
    Hu Yu, Luo Min, Chen Linying, et al. 2018. Methane source linked to gas hydrate system at hydrate drilling areas of the South China Sea: porewater geochemistry and numerical model constraints. Journal of Asian Earth Sciences, 168: 87–95. doi: 10.1016/j.jseaes.2018.04.028
    [35]
    Hyndman R D, Spence G D. 1992. A seismic study of methane hydrate marine bottom simulating reflectors. Journal of Geophysical Research, 97(B5): 6683–6698. doi: 10.1029/92JB00234
    [36]
    Ivanenkov V N, Lyakhin Y I. 1978. Determination of total alkalinity in seawater. In: Bordovsky O K, Ivanenkov V N, eds. Methods of Hydrochemical Investigations in the Ocean. Moscow: Nauka Publ, 110–114
    [37]
    Kassi A M, Khan S D, Bayraktar H, et al. 2014. Newly discovered mud volcanoes in the coastal belt of Makran, Pakistan—tectonic implications. Arabian Journal of Geosciences, 7(11): 4899–4909. doi: 10.1007/s12517-013-1135-7
    [38]
    Kastner M, Claypool G, Robertson G. 2008. Geochemical constraints on the origin of the pore fluids and gas hydrate distribution at Atwater Valley and Keathley Canyon, northern Gulf of Mexico. Marine and Petroleum Geology, 25(9): 860–872. doi: 10.1016/j.marpetgeo.2008.01.022
    [39]
    Kastner M, Elderfield H, Martin J B, et al. 1990. Diagenesis and interstitial-water chemistry at the Peruvian continental margin-major constituents and strontium isotopes. In: Suess E, Von Huene R, eds. Proceedings of the Ocean Drilling Program, Scientific Results. College Station: Ocean Drilling Program, 413–440, doi: 10.2973/odp.proc.sr.112.144.1990
    [40]
    Kukowski N, Schillhorn T, Huhn K, et al. 2001. Morphotectonics and mechanics of the central Makran accretionary wedge off Pakistan. Marine Geology, 173(1–4): 1–19
    [41]
    Kvenvolden K A, Ginsburg G D, Soloviev V A. 1993. Worldwide distribution of subaquatic gas hydrates. Geo-Marine Letters, 13(1): 32–40. doi: 10.1007/BF01204390
    [42]
    Luff R, Wallmann K. 2003. Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge, Cascadia Margin: numerical modeling and mass balances. Geochimica et Cosmochimica Acta, 67(18): 3403–3421. doi: 10.1016/S0016-7037(03)00127-3
    [43]
    Luo Min, Chen Linying, Tong Hongpeng, et al. 2014. Gas hydrate occurrence inferred from dissolved Cl concentrations and δ18O values of pore water and dissolved sulfate in the shallow sediments of the pockmark field in southwestern Xisha Uplift, Northern South China Sea. Energies, 7(6): 3886–3899. doi: 10.3390/en7063886
    [44]
    Luo Min, Chen Linying, Wang Shuhong, et al. 2013. Pockmark activity inferred from pore water geochemistry in shallow sediments of the pockmark field in southwestern Xisha Uplift, northwestern South China Sea. Marine and Petroleum Geology, 48: 247–259. doi: 10.1016/j.marpetgeo.2013.08.018
    [45]
    Masuzawa T, Handa N, Kitagawa H, et al. 1992. Sulfate reduction using methane in sediments beneath a bathyal “cold seep” giant clam community off Hatsushima Island, Sagami Bay, Japan. Earth and Planetary Science Letters, 110(1–4): 39–50
    [46]
    Mau S, Römer M, Torres M E, et al. 2017. Widespread methane seepage along the continental margin off Svalbard—from Bjørnøya to Kongsfjorden. Scientific Reports, 7(1): 42997. doi: 10.1038/srep42997
    [47]
    Mazumdar A, Peketi A, Joao H M, et al. 2014. Pore-water chemistry of sediment cores off Mahanadi Basin, Bay of Bengal: possible link to deep seated methane hydrate deposit. Marine and Petroleum Geology, 49: 162–175. doi: 10.1016/j.marpetgeo.2013.10.011
    [48]
    Mazzini A, Svensen H, Hovland M, et al. 2006. Comparison and implications from strikingly different authigenic carbonates in a Nyegga complex pockmark, G11, Norwegian Sea. Marine Geology, 231(1–4): 89–102
    [49]
    Milkov A V. 2004. Global estimates of hydrate-bound gas in marine sediments: how much is really out there?. Earth-Science Reviews, 66(3–4): 183–197
    [50]
    Minshull T, White R. 1989. Sediment compaction and fluid migration in the Makran accretionary prism. Journal of Geophysical Research, 94(B6): 7387–7402. doi: 10.1029/JB094iB06p07387
    [51]
    Minshull T A, White R S, Barton P J, et al. 1992. Deformation at plate boundaries around the Gulf of Oman. Marine Geology, 104(1–4): 265–277
    [52]
    Muramatsu Y, Wedepohl K H. 1998. The distribution of iodine in the earth’s crust. Chemical Geology, 147(3–4): 201–216
    [53]
    Nöthen K, Kasten S. 2011. Reconstructing changes in seep activity by means of pore water and solid phase Sr/Ca and Mg/Ca ratios in pockmark sediments of the Northern Congo Fan. Marine Geology, 287(1−4): 1–13
    [54]
    Ojha M, Sain K. 2009. Seismic attributes for identifying gas-hydrates and free-gas zones: application to the Makran accretionary prism. Episodes, 32(4): 264–270. doi: 10.18814/epiiugs/2009/v32i4/003
    [55]
    Platt J P, Leggett J K, Alam S. 1988. Slip vectors and fault mechanics in the Makran accretionary wedge, Southwest Pakistan. Journal of Geophysical Research, 93(B7): 7955–7973. doi: 10.1029/JB093iB07p07955
    [56]
    Platt J P, Leggett J K, Young H, et al. 1985. Large-scale sediment underplating in the Makran accretionary prism, southwest Pakistan. Geology, 13(7): 507–511. doi: 10.1130/0091-7613(1985)13<507:LSUITM>2.0.CO;2
    [57]
    Reeburgh W S. 1976. Methane consumption in Cariaco Trench waters and sediments. Earth and Planetary Science Letters, 28(3): 337–344. doi: 10.1016/0012-821X(76)90195-3
    [58]
    Reeburgh W S. 2007. Oceanic methane biogeochemistry. Chemical Reviews, 107(2): 486–513. doi: 10.1021/cr050362v
    [59]
    Reitz A, Pape T, Haeckel M, et al. 2011. Sources of fluids and gases expelled at cold seeps offshore Georgia, eastern Black Sea. Geochimica et Cosmochimica Acta, 75(11): 3250–3268. doi: 10.1016/j.gca.2011.03.018
    [60]
    Römer M, Sahling H, Pape T, et al. 2012. Quantification of gas bubble emissions from submarine hydrocarbon seeps at the Makran continental margin (offshore Pakistan). Journal of Geophysical Research, 117(C10): C10015. doi: 10.1029/2011JC007424
    [61]
    Sackett W M. 1978. Carbon and hydrogen isotope effects during the thermocatalytic production of hydrocarbons in laboratory simulation experiments. Geochimica et Cosmochimica Acta, 42(6): 571–580. doi: 10.1016/0016-7037(78)90002-9
    [62]
    Sain K, Minshull T A, Singh S C, et al. 2000. Evidence for a thick free gas layer beneath the bottom simulating reflector in the Makran accretionary prism. Marine Geology, 164(1–2): 3–12
    [63]
    Schulz H D. 2006. Quantification of early diagenesis: dissolved constituents in pore water and signals in the solid phase. In: Schulz H D, Zabel M, eds. Marine Geochemistry. Berlin, Germany: Springer
    [64]
    Seeberg-Elverfeldt J, Schlüter M, Feseker T, et al. 2005. Rhizon sampling of porewaters near the sediment-water interface of aquatic systems. Limnology and Oceanography: Methods, 3(8): 361–371. doi: 10.4319/lom.2005.3.361
    [65]
    Shipley T H, Houston M H, Buffler R T, et al. 1979. Seismic evidence for widespread possible gas hydrate horizons on continental slopes and rises. AAPG Bulletin, 63(12): 2204–2213
    [66]
    Shoar B H, Javaherian A, Farajkhah N K, et al. 2014. Reflectivity template, a quantitative intercept-gradient AVO analysis to study gas hydrate resources—a case study of Iranian deep sea sediments. Marine and Petroleum Geology, 51: 184–196. doi: 10.1016/j.marpetgeo.2013.12.007
    [67]
    Skarke A, Ruppel C, Kodis M, et al. 2014. Widespread methane leakage from the sea floor on the northern us Atlantic margin. Nature Geoscience, 7(9): 657–661. doi: 10.1038/ngeo2232
    [68]
    Snyder G T, Hiruta A, Matsumoto R, et al. 2007. Pore water profiles and authigenic mineralization in shallow marine sediments above the methane-charged system on Umitaka Spur, Japan Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 54(11–13): 1216–1239
    [69]
    Solomon E A, Spivack A J, Kastner M, et al. 2014. Gas hydrate distribution and carbon sequestration through coupled microbial methanogenesis and silicate weathering in the Krishna-Godavari Basin, offshore India. Marine and Petroleum Geology, 58: 233–253. doi: 10.1016/j.marpetgeo.2014.08.020
    [70]
    Suess E. 2018. Marine cold seeps: background and recent advances. In: Wilkes H, ed. Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate. Cham: Springer, 1–21
    [71]
    Toki T, Higa R, Ijiri A, et al. 2014. Origin and transport of pore fluids in the Nankai accretionary prism inferred from chemical and isotopic compositions of pore water at cold seep sites off Kumano. Earth, Planets and Space, 66(1): 137. doi: 10.1186/s40623-014-0137-3
    [72]
    Toki T, Tsunogai U, Gamo T, et al. 2004. Detection of low-chloride fluids beneath a cold seep field on the Nankai accretionary wedge off Kumano, South of Japan. Earth and Planetary Science Letters, 228(1–2): 37–47. doi: 10.1016/j.jpgl.2004.09.007
    [73]
    Tomaru H, Fehn U, Lu Zunli, et al. 2009. Dating of dissolved iodine in pore waters from the gas hydrate occurrence offshore Shimokita Peninsula, Japan: 129I results from the D/V Chikyu Shakedown Cruise. Resource Geology, 59(4): 359–373. doi: 10.1111/j.1751-3928.2009.00103.x
    [74]
    Torres M E, Wallmann K, Tréhu A M, et al. 2004. Gas hydrate growth, methane transport, and chloride enrichment at the southern summit of Hydrate Ridge, Cascadia margin off Oregon. Earth and Planetary Science Letters, 226(1–2): 225–241
    [75]
    Ussler III W, Paull C K. 1995. Effects of ion exclusion and isotopic fractionation on pore water geochemistry during gas hydrate formation and decomposition. Geo-Marine Letters, 15(1): 37–44. doi: 10.1007/BF01204496
    [76]
    Ussler III W, Paull C K. 2008. Rates of anaerobic oxidation of methane and authigenic carbonate mineralization in methane-rich deep-sea sediments inferred from models and geochemical profiles. Earth and Planetary Science Letters, 266(3–4): 271–287
    [77]
    von Rad U, Berner U, Delisle G, et al. 2000. Gas and fluid venting at the makran accretionary wedge off Pakistan. Geo-Marine Letters, 20(1): 10–19. doi: 10.1007/s003670000033
    [78]
    von Rad U, Rösch H, Berner U, et al. 1996. Authigenic carbonates derived from oxidized methane vented from the Makran accretionary prism off Pakistan. Marine Geology, 136(1–2): 55–77
    [79]
    Wallmann K, Aloisi G, Haeckel M, et al. 2006. Kinetics of organic matter degradation, microbial methane generation, and gas hydrate formation in anoxic marine sediments. Geochimica et Cosmochimica Acta, 70(15): 3905–3927. doi: 10.1016/j.gca.2006.06.003
    [80]
    White R S. 1977. Seismic bright spots in the Gulf of Oman. Earth and Planetary Science Letters, 37(1): 29–37. doi: 10.1016/0012-821X(77)90143-1
    [81]
    White R S. 1982. Deformation of the Makran accretionary sediment prism in the Gulf of Oman (North-West Indian Ocean). In: Leggett J K, ed. Trench-Forearc Geology: Sedimentation and Tectonics on Modern and Ancient Active Plate Margins. London: Geological Society, 357–372
    [82]
    Wiedicke M, Neben S, Spiess V. 2001. Mud volcanoes at the front of the Makran accretionary complex, Pakistan. Marine Geology, 172(1–2): 57–73
    [83]
    Whiticar M J. 1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology, 161(1–3): 291–314
    [84]
    Wu Lushan, Yang Shengxiong, Liang Jinqiang, et al. 2013. Variations of pore water sulfate gradients in sediments as indicator for underlying gas hydrate in Shenhu Area, the South China Sea. Science China: Earth Sciences, 56(4): 530–540. doi: 10.1007/s11430-012-4545-6
    [85]
    Xu Cuiling, Wu Nengyou, Sun Zhilei, et al. 2018. Methane seepage inferred from pore water geochemistry in shallow sediments in the western slope of the Mid-Okinawa Trough. Marine and Petroleum Geology, 98: 306–315. doi: 10.1016j.marpetgeo./2018.08.021
    [86]
    Yang Tao, Jiang Shaoyong, Ge Lu, et al. 2013. Geochemistry of pore waters from HQ-1PC of the Qiongdongnan Basin, northern South China Sea, and its implications for gas hydrate exploration. Science China: Earth Sciences, 56(4): 521–529. doi: 10.1007/s11430-012-4560-7
    [87]
    Ye Hong, Yang Tao, Zhu Guorong, et al. 2016. Pore water geochemistry in shallow sediments from the northeastern continental slope of the South China Sea. Marine and Petroleum Geology, 75: 68–82. doi: 10.1016/j.marpetgeo.2016.03.010
    [88]
    Zhu Youhai, Huang Yongyang, Matsumoto R, et al. 2006. Geochemical and stable isotopic compositions of pore fluids and authigenic siderite concretions from Site 1146, ODP Leg 184: Implications for gas hydrate. In: Prell W L, Wang P, Blum P, et al., eds. Proceedings of the Ocean Drilling Program, 1–15
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (677) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return