Volume 40 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
Guizhen Li, Qiliang Lai, Guangshan Wei, Peisheng Yan, Zongze Shao. Simultaneous nitrification and denitrification conducted by Halomonas venusta MA-ZP17-13 under low temperature conditions[J]. Acta Oceanologica Sinica, 2021, 40(9): 94-104. doi: 10.1007/s13131-021-1897-9
Citation: Guizhen Li, Qiliang Lai, Guangshan Wei, Peisheng Yan, Zongze Shao. Simultaneous nitrification and denitrification conducted by Halomonas venusta MA-ZP17-13 under low temperature conditions[J]. Acta Oceanologica Sinica, 2021, 40(9): 94-104. doi: 10.1007/s13131-021-1897-9

Simultaneous nitrification and denitrification conducted by Halomonas venusta MA-ZP17-13 under low temperature conditions

doi: 10.1007/s13131-021-1897-9
Funds:  The COMRA Program under contract No. DY135-B2-01; the Xiamen Ocean Economic Innovation and Development Demonstration Project under contract No. 16PZP001SF16; the National Infrastructure of Natural Resources for Science and Technology Program of China under contract No. NIMR-2017-9.
More Information
  • Corresponding author: E-mail: shaozz@163.com
  • Received Date: 2020-10-23
  • Accepted Date: 2021-02-19
  • Publish Date: 2021-09-30
  • Nitrification is a key step in the global nitrogen cycle. Compared with autotrophic nitrification, heterotrophic nitrification remains poorly understood. In this study, Halomonas venusta MA-ZP17-13, isolated from seawater in shrimp aquaculture (Penaeus vannamei), could simultaneously undertake nitrification and denitrification. With the initial ammonium concentration at 100 mg/L, the maximum ammonium-nitrogen removal rate reached 98.7% under the optimal conditions including C/N concentration ratio at 5.95, pH at 8.93, and NaCl at 2.33%. The corresponding average removal rate was 1.37 mg/(L·h) (according to nitrogen) in 3 d at 11.2°C. By whole genome sequencing and analysis, nitrification- and denitrification-related genes were identified, including ammonia monooxygenase, nitrate reductase, nitrite reductase, nitric oxide dioxygenase and nitric oxide synthase; while no gene encoding hydroxylamine oxidase was identified, it implied the existence of a novel nitrification pathway from hydroxylamine to nitrate. These results indicate heterotrophic bacterium H. venusta MA-ZP17-13 can undertake simultaneous nitrification and denitrification at low temperature and has potential for ${\rm {NH}}_4^+ $-N/NH3-N removal in marine aquaculture systems.
  • loading
  • [1]
    APHA. 2005. Standard Methods for the Examination of Water and Wastewater. 21th ed. Washington, DC, USA: American Public Health Association (APHA)
    [2]
    Armstrong D A, Chippendale D, Knight A W, et al. 1978. Interaction of ionized and un-ionized ammonia on short-term survival and growth of prawn larvae, Macrobrachium rosenbergh. The Biological Bulletin, 154(1): 15–31. doi: 10.2307/1540771
    [3]
    Atanassov C L, Muller C D, Sarhan S, et al. 1994. Effect of ammonia on endocytosis, cytokine production and lysosomal enzyme activity of a microglial cell line. Research in Immunology, 145(4): 277–288. doi: 10.1016/S0923-2494(94)80016-2
    [4]
    Auch A F, Klenk H P, Göker M. 2010a. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Standards in Genomic Sciences, 2(1): 142–148. doi: 10.4056/sigs.541628
    [5]
    Auch A F, Von Jan M, Klenk H P, et al. 2010b. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Standards in Genomic Sciences, 2(1): 117–134. doi: 10.4056/sigs.531120
    [6]
    Carrera J, Vicent T, Lafuente F J. 2003. Influence of temperature on denitrification of an industrial high-strength nitrogen wastewater in a two-sludge system. Water SA, 29(1): 11–16
    [7]
    Chen Qian, Ni Jinren. 2012. Ammonium removal by Agrobacterium sp. LAD9 capable of heterotrophic nitrification–aerobic denitrification. Journal of Bioscience and Bioengineering, 113(5): 619–623. doi: 10.1016/j.jbiosc.2011.12.012
    [8]
    Chin C S, Alexander D H, Marks P, et al. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nature Methods, 10(6): 563–569. doi: 10.1038/nmeth.2474
    [9]
    Chiu Y C, Lee L L, Chang Chengnan, et al. 2007. Control of carbon and ammonium ratio for simultaneous nitrification and denitrification in a sequencing batch bioreactor. International Biodeterioration & Biodegradation, 59(1): 1–7
    [10]
    Gardner P R, Gardner A M, Martin L A, et al. 1998. Nitric oxide dioxygenase: an enzymic function for flavohemoglobin. Proceedings of the National Academy of Sciences of the United States of America, 95(18): 10378–10383. doi: 10.1073/pnas.95.18.10378
    [11]
    Goris J, Konstantinidis K T, Klappenbach J A, et al. 2007. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. International Journal of Systematic and Evolutionary Microbiology, 57(1): 81–91. doi: 10.1099/ijs.0.64483-0
    [12]
    He Tengxia, Li Zhenlun, Sun Quan, et al. 2016. Heterotrophic nitrification and aerobic denitrification by Pseudomonas tolaasii Y-11 without nitrite accumulation during nitrogen conversion. Bioresource Technology, 200: 493–499. doi: 10.1016/j.biortech.2015.10.064
    [13]
    He Tengxia, Xie Deti, Li Zhenlun, et al. 2017. Ammonium stimulates nitrate reduction during simultaneous nitrification and denitrification process by Arthrobacter arilaitensis Y-10. Bioresource Technology, 239: 66–73. doi: 10.1016/j.biortech.2017.04.125
    [14]
    Hooper A B, Vannelli T, Bergmann D J, et al. 1997. Enzymology of the oxidation of ammonia to nitrite by bacteria. Antonie van Leeuwenhoek, 71(1): 59–67
    [15]
    Huang Xiaofei, Li Weiguang, Zhang Duoying, et al. 2013. Ammonium removal by a novel oligotrophic Acinetobacter sp. Y16 capable of heterotrophic nitrification-aerobic denitrification at low temperature. Bioresource Technology, 146: 44–50. doi: 10.1016/j.biortech.2013.07.046
    [16]
    Hynes R K, Knowles R. 1978. Inhibition by acetylene of ammonia oxidation in Nitrosomonas europaea. FEMS Microbiology Letters, 4(6): 319–321. doi: 10.1111/j.1574-6968.1978.tb02889.x
    [17]
    Kan Fu, Xia Qinbin, Li Zhong, et al. 2011. Research of ammonia adsorption with Maifan stone. Industrial Safety and Environmental Protection, 37(4): 3–5
    [18]
    Kim J K, Park K J, Cho K S, et al. 2005. Aerobic nitrification–denitrification by heterotrophic Bacillus strains. Bioresource Technology, 96(17): 1897–1906. doi: 10.1016/j.biortech.2005.01.040
    [19]
    Koren S, Schatz M C, Walenz B P, et al. 2012. Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nature Biotechnology, 30(7): 693–700. doi: 10.1038/nbt.2280
    [20]
    Krzywinski M, Schein J, Birol I, et al. 2009. Circos: an information aesthetic for comparative genomics. Genome Research, 19(9): 1639–1645. doi: 10.1101/gr.092759.109
    [21]
    Li Guizhen, Lai Qiliang, Yan Peisheng, et al. 2019. Roseovarius amoyensis sp. nov. and Muricauda amoyensis sp. nov., isolated from the Xiamen coast. International Journal of Systematic and Evolutionary Microbiology, 69(10): 3100–3108. doi: 10.1099/ijsem.0.003595
    [22]
    Lin Y C, Chen J C. 2003. Acute toxicity of nitrite on Litopenaeus vannamei (Boone) juveniles at different salinity levels. Aquaculture, 224(1–4): 193–201. doi: 10.1016/S0044-8486(03)00220-5
    [23]
    Lu Lu, Jia Zhongjun. 2013. Urease gene-containing Archaea dominate autotrophic ammonia oxidation in two acid soils. Environmental Microbiology, 15(6): 1795–1809. doi: 10.1111/1462-2920.12071
    [24]
    Lundberg J O, Weitzberg E, Cole J A, et al. 2004. Nitrate, bacteria and human health. Nature Reviews Microbiology, 2(7): 593–602. doi: 10.1038/nrmicro929
    [25]
    McCarty G W. 1999. Modes of action of nitrification inhibitors. Biology and Fertility of Soils, 29(1): 1–9. doi: 10.1007/s003740050518
    [26]
    Meier-Kolthoff J P, Auch A F, Klenk H P, et al. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics, 14: 60. doi: 10.1186/1471-2105-14-60
    [27]
    Myers R H, Montgomery D C, Anderson-Cook C M. 2016. Response Surface Methodology: Process and Product Optimization Using Designed Experiments. New York: John Wiley & Sons
    [28]
    Qu Dan, Wang Cong, Wang Yanfang, et al. 2015. Heterotrophic nitrification and aerobic denitrification by a novel groundwater origin cold-adapted bacterium at low temperatures. RSC Advances, 5(7): 5149–5157. doi: 10.1039/C4RA13141J
    [29]
    Qu Jianhua, Meng Xianlin, You Hong, et al. 2017. Utilization of rice husks functionalized with xanthates as cost-effective biosorbents for optimal Cd(II) removal from aqueous solution via response surface methodology. Bioresource Technology, 241: 1036–1042. doi: 10.1016/j.biortech.2017.06.055
    [30]
    Ren Yongxiang, Yang Lei, Liang Xian. 2014. The characteristics of a novel heterotrophic nitrifying and aerobic denitrifying bacterium, Acinetobacter junii YB. Bioresource Technology, 171: 1–9. doi: 10.1016/j.biortech.2014.08.058
    [31]
    Richter M, Rosselló-Móra R. 2009. Shifting the genomic gold standard for the prokaryotic species definition. Proceedings of the National Academy of Sciences of the United States of America, 106(45): 19126–19131. doi: 10.1073/pnas.0906412106
    [32]
    Rodriguez-Caballero A, Hallin S, Påhlson C, et al. 2012. Ammonia oxidizing bacterial community composition and process performance in wastewater treatment plants under low temperature conditions. Water Science and Technology, 65(2): 197–204. doi: 10.2166/wst.2012.643
    [33]
    Ryden J C, Skinner J H, Nixon D J. 1987. Soil core incubation system for the field measurement of denitrification using acetylene-inhibition. Soil Biology and Biochemistry, 19(6): 753–757. doi: 10.1016/0038-0717(87)90059-9
    [34]
    Savasari M, Emadi M, Ali Bahmanyar M, et al. 2015. Optimization of Cd (II) removal from aqueous solution by ascorbic acid-stabilized zero valent iron nanoparticles using response surface methodology. Journal of Industrial and Engineering Chemistry, 21: 1403–1409. doi: 10.1016/j.jiec.2014.06.014
    [35]
    Schopfer M P, Mondal B, Lee D H, et al. 2009. Heme/O2/·NO Nitric oxide dioxygenase (NOD) reactivity: phenolic nitration via a putative heme-peroxynitrite intermediate. Journal of the American Chemical Society, 131(32): 11304–11305. doi: 10.1021/ja904832j
    [36]
    Schuler D J, Boardman G D, Kuhn D D, et al. 2010. Acute toxicity of ammonia and nitrite to pacific white shrimp, Litopenaeus vannamei, at low salinities. Journal of the World Aquaculture Society, 41(3): 438–446. doi: 10.1111/j.1749-7345.2010.00385.x
    [37]
    Shan H, Obbard J. 2001. Ammonia removal from prawn aquaculture water using immobilized nitrifying bacteria. Applied Microbiology and Biotechnology, 57(5−6): 791–798. doi: 10.1007/s00253-001-0835-1
    [38]
    Smart G R. 1978. Investigations of the toxic mechanisms of ammonia to fish–gas exchange in rainbow trout (Salmo gairdneri) exposed to acutely lethal concentrations. Journal of Fish Biology, 12(1): 93–104. doi: 10.1111/j.1095-8649.1978.tb04155.x
    [39]
    Tatusova T, Dicuccio M, Badretdin A, et al. 2016. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Research, 44(14): 6614–6624. doi: 10.1093/nar/gkw569
    [40]
    Thurston R V, Russo R C, Vinogradov G A. 1981. Ammonia toxicity to fishes. Effect of pH on the toxicity of the unionized ammonia species. Environmental Science & Technology, 15(7): 837–840
    [41]
    Wang Te, Jiang Zhengzhong, Dong Wenbo, et al. 2019. Growth and nitrogen removal characteristics of Halomonas sp. B01 under high salinity. Annals of Microbiology, 69(13): 1425–1433. doi: 10.1007/s13213-019-01526-y
    [42]
    Wayne L G, Brenner D J, Colwell R R, et al. 1987. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. International Journal of Systematic and Evolutionary Microbiology, 37(4): 463–464. doi: 10.1099/00207713-37-4-463
    [43]
    Wei Yunxia, Li Yanfeng, Ye Zhengfang. 2010. Enhancement of removal efficiency of ammonia nitrogen in sequencing batch reactor using natural zeolite. Environmental Earth Sciences, 60(7): 1407–1413. doi: 10.1007/s12665-009-0276-1
    [44]
    Xu Yi, He Tengxia, Li Zhenlun, et al. 2017. Nitrogen removal characteristics of Pseudomonas putida Y-9 capable of heterotrophic nitrification and aerobic denitrification at low temperature. BioMed Research International, 2017: 1429018
    [45]
    Yao Shuo, Ni Jinren, Ma Tao, et al. 2013. Heterotrophic nitrification and aerobic denitrification at low temperature by a newly isolated bacterium, Acinetobacter sp. HA2. Bioresource Technology, 139: 80–86. doi: 10.1016/j.biortech.2013.03.189
    [46]
    Yu Lei, Wang Yangqing, Liu Hongjie, et al. 2016. A novel heterotrophic nitrifying and aerobic denitrifying bacterium, Zobellella taiwanensis DN-7, can remove high-strength ammonium. Applied Microbiology and Biotechnology, 100(9): 4219–4229. doi: 10.1007/s00253-016-7290-5
    [47]
    Zerbino D R. 2010. Using the Velvet de novo assembler for short-read sequencing technologies. Current Protocols in Bioinformatics, 31(1): 5–11
    [48]
    Zhang Yan, Cheng Yu, Fei Yutao, et al. 2016. Response to different nitrogen forms of heterotrophic nitrifying-aerobic denitrifying bacteria X3. Advances in Marine Sciences, 3(4): 118–126. doi: 10.12677/AMS.2016.34016
    [49]
    Zhang Duoying, Li Weiguang, Huang Xiaofei, et al. 2013. Removal of ammonium in surface water at low temperature by a newly isolated Microbacterium sp. strain SFA13. Bioresource Technology, 137: 147–152. doi: 10.1016/j.biortech.2013.03.094
    [50]
    Zhang Jinbo, Sun Weijun, Zhong Wenhui, et al. 2014. The substrate is an important factor in controlling the significance of heterotrophic nitrification in acidic forest soils. Soil Biology and Biochemistry, 76: 143–148. doi: 10.1016/j.soilbio.2014.05.001
    [51]
    Zhang Jibin, Wu Pengxia, Hao Bo, et al. 2011. Heterotrophic nitrification and aerobic denitrification by the bacterium Pseudomonas stutzeri YZN-001. Bioresource Technology, 102(21): 9866–9869. doi: 10.1016/j.biortech.2011.07.118
    [52]
    Zhao Bin, An Qiang, He Yiliang, et al. 2012. N2O and N2 production during heterotrophic nitrification by Alcaligenes faecalis strain NR. Bioresource Technology, 116: 379–385. doi: 10.1016/j.biortech.2012.03.113
    [53]
    Zhao Bin, He Yiliang, Huang Jue, et al. 2010b. Heterotrophic nitrogen removal by Providencia rettgeri strain YL. Journal of Industrial Microbiology & Biotechnology, 37(6): 609–616
    [54]
    Zhao Bin, He Yiliang, Hughes J, et al. 2010a. Heterotrophic nitrogen removal by a newly isolated Acinetobacter calcoaceticus HNR. Bioresource Technology, 101(14): 5194–5200. doi: 10.1016/j.biortech.2010.02.043
    [55]
    Zhou Xiang, Xin Zhijun, Lu Xihong, et al. 2013. High efficiency degradation crude oil by a novel mutant irradiated from Dietzia strain by 12C6+ heavy ion using response surface methodology. Bioresource Technology, 137: 386–393. doi: 10.1016/j.biortech.2013.03.097
    [56]
    Zhu Guibing, Peng Yongzhen, Li Baikun, et al. 2008. Biological removal of nitrogen from wastewater. In: Whitacre D M, ed. Reviews of Environmental Contamination and Toxicology. New York: Springer, 192: 159–195
  • 40-9-Li Guizhen Supplementary information Table S1 (1).pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(6)

    Article Metrics

    Article views (112) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return