Citation: | Yankun Gong, Jieshuo Xie, Jiexin Xu, Zhiwu Chen, Yinghui He, Shuqun Cai. Oceanic internal solitary waves at the Indonesian submarine wreckage site[J]. Acta Oceanologica Sinica, 2022, 41(3): 109-113. doi: 10.1007/s13131-021-1893-0 |
[1] |
Aiki H, Matthews J P, Lamb K G. 2011. Modeling and energetics of tidally generated wave trains in the Lombok Strait: impact of the Indonesian Throughflow. Journal of Geophysical Research: Oceans, 116(C3): C03023
|
[2] |
Amante C, Eakins B W. 2009. ETOPO1 arc-minute global relief model: procedures, data sources and analysis. In: NOAA Technical Memorandum NESDIS NGDC-24. Boulder, Colorado: NOAA [2021-07-14] file:///C:/Users/701-zhoujing/AppData/Roaming/SogouExplorer/Download/ETOPO1_1_Arc-Minute_Global_Relief_Model_procedures.pdf
|
[3] |
Jackson C. 2007. Internal wave detection using the moderate resolution imaging spectroradiometer (MODIS). Journal of Geophysical Research: Oceans, 112(C11): C11012. doi: 10.1029/2007JC004220
|
[4] |
Mitnik L, Alpers W, Lim H. 2000. Thermal plumes and internal solitary waves generated in the Lombok Strait studied by ERS SAR. In: ERS-Envisat Symposium. Gothenburg: ESA Publication, 16–20
|
[5] |
Murray S P, Arief D. 1988. Throughflow into the Indian Ocean through the Lombok Strait, January 1985−January 1986. Nature, 333(6172): 444–447. doi: 10.1038/333444a0
|
[6] |
Ningsih N S, Rachmayani R, Hadi S, et al. 2010. Internal waves dynamics in the Lombok Strait studied by a numerical model. International Journal of Remote Sensing and Earth Sciences (IJReSES), 5(1): 17–33
|
[7] |
Ostrovsky L A, Stepanyants Y A. 1989. Do internal solitions exist in the ocean?. Reviews of Geophysics, 27(3): 293–310. doi: 10.1029/RG027i003p00293
|
[8] |
Purwandana A, Cuypers Y, Bouruet-Aubertot P. 2021. Observation of internal tides, nonlinear internal waves and mixing in the Lombok Strait, Indonesia. Continental Shelf Research, 216: 104358. doi: 10.1016/j.csr.2021.104358
|
[9] |
Susanto R D, Mitnik L, Zheng Quan’an. 2005. Ocean internal waves observed in the Lombok Strait. Oceanography, 18(4): 80–87. doi: 10.5670/oceanog.2005.08
|
[10] |
Vitousek S, Fringer O B. 2011. Physical vs. numerical dispersion in nonhydrostatic ocean modeling. Ocean Modelling, 40(1): 72–86
|
[11] |
Zheng Quan’an, Yuan Yeli, Klemas V, et al. 2001. Theoretical expression for an ocean internal soliton synthetic aperture radar image and determination of the soliton characteristic half width. Journal of Geophysical Research: Oceans, 106(C12): 31415–31423. doi: 10.1029/2000JC000726
|
1. | Sandy Grégorio, Daniel Bourgault, Peter S. Galbraith, et al. The impact of underwater waves on ship manoeuvrability: a case study in a fjord. Scientific Reports, 2025, 15(1) doi:10.1038/s41598-025-90132-x | |
2. | Hengyu Li, Kan Zeng, Chaofang Zhao, et al. The Possibility of Internal Waves Causing the Sinking of Indonesian “KRI Nanggala-402” Submarine Analyzed With SAR Imagery. IEEE Geoscience and Remote Sensing Letters, 2025, 22: 1. doi:10.1109/LGRS.2024.3523483 | |
3. | Zhikuan Pan, Zhenhe Zhai, Qi Li, et al. Preliminary Investigation of the Spatial-Temporal Characteristics and Vertical Dynamics of Internal Solitary Waves in the South China Sea from SWOT Data. Journal of Marine Science and Engineering, 2025, 13(2): 304. doi:10.3390/jmse13020304 | |
4. | Lu Cheng, Peng Du, Chao Wang, et al. Tuning control parameters of underwater vehicle to minimize the influence of internal solitary waves. Ocean Engineering, 2024, 310: 118681. doi:10.1016/j.oceaneng.2024.118681 | |
5. | Junmin Meng, Hao Zhang, Lina Sun, et al. Remote Sensing Techniques for Detecting Internal Solitary Waves: A comprehensive review and prospects. IEEE Geoscience and Remote Sensing Magazine, 2024, 12(4): 46. doi:10.1109/MGRS.2024.3402673 | |
6. | Lu Cheng, Peng Du, Haibao Hu, et al. Control of underwater suspended vehicle to avoid ‘falling deep’ under the influence of internal solitary waves. Ships and Offshore Structures, 2024, 19(9): 1349. doi:10.1080/17445302.2023.2244726 | |
7. | Zhenyang He, Wenbin Wu, Junrong Wang, et al. Investigations into Motion Responses of Suspended Submersible in Internal Solitary Wave Field. Journal of Marine Science and Engineering, 2024, 12(4): 596. doi:10.3390/jmse12040596 | |
8. | Hao Zhang, Chenqing Fan, Lina Sun, et al. Study of the ability of SWOT to detect sea surface height changes caused by internal solitary waves. Acta Oceanologica Sinica, 2024, 43(5): 54. doi:10.1007/s13131-024-2324-9 | |
9. | Junnan Xu, Hui Du, Pai Peng, et al. Nonstationary spatiotemporal characteristics of internal solitary waves propagating along a convex side boundary. Ocean Engineering, 2024, 311: 118867. doi:10.1016/j.oceaneng.2024.118867 | |
10. | Lu Cheng, Chao Wang, Binbin Guo, et al. Numerical investigation on the interaction between large-scale continuously stratified internal solitary wave and moving submersible. Applied Ocean Research, 2024, 145: 103938. doi:10.1016/j.apor.2024.103938 | |
11. | Kexiao Lu, Tao Xu, Xu Chen, et al. Relationships between internal solitary wave surface features in optical and SAR satellite images: Insights from remote sensing and laboratory. Ocean Engineering, 2024, 309: 118500. doi:10.1016/j.oceaneng.2024.118500 | |
12. | Binbin Zhao, Tianyu Zhang, Zhan Wang, et al. High-level Green–Naghdi model for large-amplitude internal waves in deep water. Journal of Fluid Mechanics, 2024, 988 doi:10.1017/jfm.2024.460 | |
13. | Hao Zhang, Junmin Meng, Lina Sun, et al. Characterization of Polarized SAR Scattering of Breaking Waves Caused by Internal Solitary Waves. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 2939. doi:10.1109/JSTARS.2023.3345033 | |
14. | Guanjing Wang, Shaodong Wang, Jianfang Fei, et al. Experimental study of evolution and energy dissipation of internal solitary waves beneath the different sea ice models. Ocean Engineering, 2024, 311: 118903. doi:10.1016/j.oceaneng.2024.118903 | |
15. | Junrong Wang, Qiangbo Chang, Zhenyang He, et al. Numerical investigation on motion responses of high-speed self-propelled submersible subject to internal solitary wave. Physics of Fluids, 2024, 36(12) doi:10.1063/5.0241221 | |
16. | Lina Sun, Yanliang Liu, Junmin Meng, et al. Internal solitary waves in the central Andaman sea observed by combining mooring data and satellite remote sensing. Continental Shelf Research, 2024, 277: 105249. doi:10.1016/j.csr.2024.105249 | |
17. | Tao Xu, Xu Chen, Qun Li, et al. Strongly Nonlinear Effects on Determining Internal Solitary Wave Parameters From Surface Signatures With Potential for Remote Sensing Applications. Geophysical Research Letters, 2023, 50(23) doi:10.1029/2023GL105814 | |
18. | Junrong Wang, Zhenyang He, Botao Xie, et al. Numerical investigation on the interaction between internal solitary wave and self-propelled submersible. Physics of Fluids, 2023, 35(10) doi:10.1063/5.0169436 | |
19. | J. Chen, S. L. Bao, H. Z. Wang, et al. Analysis on Causes of the “4·21” Indonesian Submarine “Nanggala” Crash Based on Satellite Images. Journal of Physics: Conference Series, 2023, 2486(1): 012014. doi:10.1088/1742-6596/2486/1/012014 | |
20. | Yunxiang Zhang, Mei Hong, Yongchui Zhang, et al. Characteristics of Internal Solitary Waves in the Timor Sea Observed by SAR Satellite. Remote Sensing, 2023, 15(11): 2878. doi:10.3390/rs15112878 | |
21. | Longyu Huang, Jingsong Yang, Zetai Ma, et al. High-Frequency Observations of Oceanic Internal Waves from Geostationary Orbit Satellites. Ocean-Land-Atmosphere Research, 2023, 2 doi:10.34133/olar.0024 | |
22. | Cunguo Xu, Zhan Wang, Hayatdavoodi Masoud. Error Calculation of Large-Amplitude Internal Solitary Waves Within the Pycnocline Introduced by the Strong Stratification Approximation. Journal of Marine Science and Application, 2023, 22(1): 146. doi:10.1007/s11804-023-00312-2 | |
23. | Song Wu, Xiaojiang Zhang, Senliang Bao, et al. Predicting Ocean Temperature in High-Frequency Internal Wave Area with Physics-Guided Deep Learning: A Case Study from the South China Sea. Journal of Marine Science and Engineering, 2023, 11(9): 1728. doi:10.3390/jmse11091728 | |
24. | Guanghua He, Hongfei Xie, Zhigang Zhang, et al. Numerical Investigation of Internal Solitary Wave Forces on a Moving Submarine. Journal of Marine Science and Engineering, 2022, 10(8): 1020. doi:10.3390/jmse10081020 | |
25. | Pai Peng, Hui Du, Gang Wei, et al. Experimental Investigation on the Vertical Structure Characteristics of Internal Solitary Waves. Journal of Marine Science and Engineering, 2022, 10(8): 1045. doi:10.3390/jmse10081045 | |
26. | Hao Zhang, Junmin Meng, Lina Sun, et al. Observations of Reflected Internal Solitary Waves near the Continental Shelf of the Dongsha Atoll. Journal of Marine Science and Engineering, 2022, 10(6): 763. doi:10.3390/jmse10060763 | |
27. | Junmin Meng, Lina Sun, Hao Zhang, et al. Remote sensing survey and research on internal solitary waves in the South China Sea-Western Pacific-East Indian Ocean (SCS-WPAC-EIND). Acta Oceanologica Sinica, 2022, 41(10): 154. doi:10.1007/s13131-022-2018-0 | |
28. | Suhe Huang, Lu Cheng, Peng Du, et al. Proceedings of The 6th International Conference on Advances in Civil and Ecological Engineering Research. Lecture Notes in Civil Engineering, doi:10.1007/978-981-96-1627-5_14 |