Volume 41 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
Guijun Han, Jianfeng Zhou, Qi Shao, Wei Li, Chaoliang Li, Xiaobo Wu, Lige Cao, Haowen Wu, Yundong Li, Gongfu Zhou. Bias correction of sea surface temperature retrospective forecasts in the South China Sea[J]. Acta Oceanologica Sinica, 2022, 41(2): 41-50. doi: 10.1007/s13131-021-1880-5
Citation: Guijun Han, Jianfeng Zhou, Qi Shao, Wei Li, Chaoliang Li, Xiaobo Wu, Lige Cao, Haowen Wu, Yundong Li, Gongfu Zhou. Bias correction of sea surface temperature retrospective forecasts in the South China Sea[J]. Acta Oceanologica Sinica, 2022, 41(2): 41-50. doi: 10.1007/s13131-021-1880-5

Bias correction of sea surface temperature retrospective forecasts in the South China Sea

doi: 10.1007/s13131-021-1880-5
Funds:  The National Key Research and Development Program of China under contract No. 2018YFC1406206; the National Natural Science Foundation of China under contract No. 41876014.
More Information
  • Offline bias correction of numerical marine forecast products is an effective post-processing means to improve forecast accuracy. Two offline bias correction methods for sea surface temperature (SST) forecasts have been developed in this study: a backpropagation neural network (BPNN) algorithm, and a hybrid algorithm of empirical orthogonal function (EOF) analysis and BPNN (named EOF-BPNN). The performances of these two methods are validated using bias correction experiments implemented in the South China Sea (SCS), in which the target dataset is a six-year (2003–2008) daily mean time series of SST retrospective forecasts for one-day in advance, obtained from a regional ocean forecast and analysis system called the China Ocean Reanalysis (CORA), and the reference time series is the gridded satellite-based SST. The bias-correction results show that the two methods have similar good skills; however, the EOF-BPNN method is more than five times faster than the BPNN method. Before applying the bias correction, the basin-wide climatological error of the daily mean CORA SST retrospective forecasts in the SCS is up to −3°C; now, it is minimized substantially, falling within the error range (±0.5°C) of the satellite SST data.
  • loading
  • [1]
    Abhilash S, Sahai A K, Borah N, et al. 2014. Does bias correction in the forecasted SST improve the extended range prediction skill of active-break spells of Indian summer monsoon rainfall?. Atmospheric Science Letters, 15(2): 114–119. doi: 10.1002/asl2.477
    [2]
    Ashfaq M, Skinner C B, Diffenbaugh N S. 2011. Influence of SST biases on future climate change projections. Climate Dynamics, 36(7–8): 1303–1319,
    [3]
    Balmaseda M A, Mogensen K, Weaver A T. 2013. Evaluation of the ECMWF ocean reanalysis system ORAS4. Quarterly Journal of the Royal Meteorological Society, 139(674): 1132–1161. doi: 10.1002/qj.2063
    [4]
    Bhargava K, Kalnay E, Carton J A, et al. 2018. Estimation of systematic errors in the GFS using analysis increments. Journal of Geophysical Research: Atmospheres, 123(3): 1626–1637. doi: 10.1002/2017JD027423
    [5]
    Boutilier C, Patrascu R, Poupart P, et al. 2006. Constraint-based optimization and utility elicitation using the minimax decision criterion. Artificial Intelligence, 170(8–9): 686–713,
    [6]
    Carter G M, Dallavalle J P, Glahn H R. 1989. Statistical forecasts based on the National Meteorological Center’s numerical weather prediction system. Weather and Forecasting, 4(3): 401–412. doi: 10.1175/1520-0434(1989)004<0401:SFBOTN>2.0.CO;2
    [7]
    Chang Y, Schubert S D, Koster R D, et al. 2019. Tendency bias correction in coupled and uncoupled global climate models with a focus on impacts over North America. Journal of Climate, 32(2): 639–661. doi: 10.1175/JCLI-D-18-0598.1
    [8]
    Chao Guofang, Wu Xinrong, Zhang Lianxin, et al. 2020. China Ocean ReAnalysis (CORA) version 1.0 products and validation for 2009–18. Atmospheric and Oceanic Science Letters, 14(5): 100023. doi: 10.1016/j.aosl.2020.100023
    [9]
    Chen Xiao, Yan Youfang, Cheng Xuhua, et al. 2013. Performances of seven datasets in presenting the upper ocean heat content in the South China Sea. Advances in Atmospheric Sciences, 30(5): 1331–1342. doi: 10.1007/s00376-013-2132-1
    [10]
    Dalcher A, Kalnay E. 1987. Error growth and predictability in operational ECMWF forecasts. Tellus A, 39A(5): 474–491. doi: 10.1111/j.1600-0870.1987.tb00322.x
    [11]
    Danforth C M, Kalnay E, Miyoshi T. 2007. Estimating and correcting global weather model error. Monthly Weather Review, 135(2): 281–299. doi: 10.1175/MWR3289.1
    [12]
    Dee D P, Da Silva A M. 1998. Data assimilation in the presence of forecast bias. Quarterly Journal of the Royal Meteorological Society, 124(545): 269–295. doi: 10.1002/qj.49712454512
    [13]
    Fan Maoting, Wang Huizan, Zhang Weimin, et al. 2020. Evaluation of the China ocean reanalysis (CORA) in the South China Sea. Journal of Oceanology and Limnology, 38(6): 1640–1653. doi: 10.1007/s00343-019-9146-1
    [14]
    Fox D N, Teague W J, Barron C N, et al. 2002. The modular ocean data assimilation system (MODAS). Journal of Atmospheric and Oceanic Technology, 19(2): 240–252. doi: 10.1175/1520-0426(2002)019<0240:TMODAS>2.0.CO;2
    [15]
    Glahn H R, Lowry D A. 1972. The use of model output statistics (MOS) in objective weather forecasting. Journal of Applied Meteorology and Climatology, 11(8): 1203–1211. doi: 10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2
    [16]
    Good S A, Martin M J, Rayner N A. 2013. EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. Journal of Geophysical Research: Oceans, 118(12): 6704–6716. doi: 10.1002/2013JC009067
    [17]
    Han Guijun, Li Wei, Zhang Xuefeng, et al. 2011. A regional ocean reanalysis system for coastal waters of China and adjacent seas. Advances in Atmospheric Sciences, 28(3): 682–690. doi: 10.1007/s00376-010-9184-2
    [18]
    Han Guijun, Li Wei, Zhang Xuefeng, et al. 2013. A new version of regional ocean reanalysis for coastal waters of China and adjacent seas. Advances in Atmospheric Sciences, 30(4): 974–982. doi: 10.1007/s00376-012-2195-4
    [19]
    Hernández-Díaz L, Nikiéma O, Laprise R, et al. 2019. Effect of empirical correction of sea-surface temperature biases on the CRCM5-simulated climate and projected climate changes over North America. Climate Dynamics, 53(1–2): 453–476,
    [20]
    Kingma D P, Ba J. 2015. Adam: a method for stochastic optimization. In: Proceedings of the 3rd International Conference for Learning Representations. San Diego, CA, USA: ICLR
    [21]
    Klein W H. 1971. Computer prediction of precipitation probability in the United States. Journal of Applied Meteorology and Climatology, 10(5): 903–915. doi: 10.1175/1520-0450(1971)010<0903:CPOPPI>2.0.CO;2
    [22]
    Klein W H, Lewis B M, Enger I. 1959. Objective prediction of five-day mean temperatures during winter. Journal of the Atmospheric Sciences, 16(6): 672–682. doi: 10.1175/1520-0469(1959)016<0672:OPOFDM>2.0.CO;2
    [23]
    Kug J S, Lee J Y, Kang I S. 2008. Systematic error correction of dynamical seasonal prediction of sea surface temperature using a stepwise pattern project method. Monthly Weather Review, 136(9): 3501–3512. doi: 10.1175/2008MWR2272.1
    [24]
    LaRow T E. 2013. The impact of SST bias correction on North Atlantic hurricane retrospective forecasts. Monthly Weather Review, 141(2): 490–498. doi: 10.1175/MWR-D-12-00152.1
    [25]
    Lee M A, Chang Yi, Sakaida F, et al. 2005. Validation of satellite-derived sea surface temperatures for waters around Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 16(5): 1189–1204,
    [26]
    Li Wei, Xie Yuanfu, Deng S M, et al. 2010. Application of the multigrid method to the two-dimensional Doppler radar radial velocity data assimilation. Journal of Atmospheric and Oceanic Technology, 27(2): 319–332. doi: 10.1175/2009JTECHA1271.1
    [27]
    Li Wei, Xie Yuanfu, He Zhongjie, et al. 2008. Application of the multigrid data assimilation scheme to the China seas’ temperature forecast. Journal of Atmospheric and Oceanic Technology, 25(11): 2106–2116. doi: 10.1175/2008JTECHO510.1
    [28]
    Maas A L, Hannun A Y, Ng A Y. 2013. Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of the 30th International Conference on Machine Learning. Atlanta, GA, USA: ICLR
    [29]
    Mellor G L, Häkkinen S M, Ezer T, et al. 2002. A generalization of a sigma coordinate ocean model and an intercomparison of model vertical grids. In: Pinardi N, Woods J, eds. Ocean Forecasting: Conceptual Basis and Applications. Berlin, Heidelberg: Springer, 55–72
    [30]
    Narapusetty B, Stan C, Kumar A. 2014. Bias correction methods for decadal sea-surface temperature forecasts. Tellus A: Dynamic Meteorology and Oceanography, 66(1): 23681. doi: 10.3402/tellusa.v66.23681
    [31]
    North G R, Bell T L, Cahalan R F, et al. 1982. Sampling errors in the estimation of empirical orthogonal functions. Monthly Weather Review, 110(7): 699–706. doi: 10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2
    [32]
    Qiu Chunhua, Wang Dongxiao, Kawamura H, et al. 2009. Validation of AVHRR and TMI-derived sea surface temperature in the northern South China Sea. Continental Shelf Research, 29(20): 2358–2366. doi: 10.1016/j.csr.2009.10.009
    [33]
    Reynolds R W, Smith T M, Liu Chunying, et al. 2007. Daily high-resolution-blended analyses for sea surface temperature. Journal of Climate, 20(22): 5473–5496. doi: 10.1175/2007JCLI1824.1
    [34]
    Rumelhart D E, Hinton G E, Williams R J. 1986. Learning representations by back-propagating errors. Nature, 323(6088): 533–536. doi: 10.1038/323533a0
    [35]
    Sakaida F, Kudoh J I, Kawamura H. 2000. A-HIGHERS—the system to produce the high spatial resolution sea surface temperature maps of the western North Pacific using the AVHRR/NOAA. Journal of Oceanography, 56(6): 707–716. doi: 10.1023/A:1011181918048
    [36]
    Vitart F, Balmaseda M. 2018. Impact of sea surface temperature biases on extended-range forecasts. ECMWF Technical Memoranda. Reading, UK: ECMWF
    [37]
    Voldoire A, Exarchou E, Sanchez-Gomez E, et al. 2019. Role of wind stress in driving SST biases in the Tropical Atlantic. Climate Dynamics, 53(5–6): 3481–3504,
    [38]
    Wu Yang, Cheng Guosheng, Han Guijun, et al. 2013. Analysis of seasonal and interannual variability of sea surface temperature for China Seas based on CORA dataset. Haiyang Xuebao (in Chinese), 35(1): 44–54. doi: 10.3969/j.issn.0253-4193.2013.01.006
    [39]
    Xie Shangping, Xie Qiang, Wang Dongxiao, et al. 2003. Summer upwelling in the South China Sea and its role in regional climate variations. Journal of Geophysical Research: Oceans, 108(C8): 3261. doi: 10.1029/2003JC001867
    [40]
    Xing Yansong, Cheng Guosheng, Shu Yeqiang, et al. 2012. Anomalous characteristics of the ocean circulation in South China Sea during the El Niño events. Oceanologia et Limnologia Sinica, 43(2): 201–209
    [41]
    Zhang Min, Zhou Lei, Fu Hongli, et al. 2016. Assessment of intraseasonal variabilities in China Ocean Reanalysis (CORA). Acta Oceanologica Sinica, 35(3): 90–101. doi: 10.1007/s13131-016-0820-2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (274) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return