Citation: | Fangjie Yu, Zeyuan Wang, Shuai Liu, Ge Chen. Inversion of the three-dimensional temperature structure of mesoscale eddies in the Northwest Pacific based on deep learning[J]. Acta Oceanologica Sinica, 2021, 40(10): 176-186. doi: 10.1007/s13131-021-1841-z |
[1] |
Ali M M, Jagadeesh P S V, Lin I I, et al. 2012. A neural network approach to estimate tropical cyclone heat potential in the Indian Ocean. IEEE Geoscience and Remote Sensing Letters, 9(6): 1114–1117. doi: 10.1109/LGRS.2012.2190491
|
[2] |
Ali M M, Swain D, Weller R A. 2004. Estimation of ocean subsurface thermal structure from surface parameters: a neural network approach. Geophysical Research Letters, 31(20): L20308. doi: 10.1029/2004GL021192
|
[3] |
Alvera-Azcárate A, Barth A, Rixen M, et al. 2005. Reconstruction of incomplete oceanographic data sets using empirical orthogonal functions: application to the Adriatic Sea surface temperature. Ocean Modelling, 9(4): 325–346. doi: 10.1016/j.ocemod.2004.08.001
|
[4] |
Barcelo-Llull B, Pascual A, Mason E, et al. 2018. Comparing a multivariate global ocean state estimate with high-resolution in situ data: an anticyclonic intrathermocline eddy near the canary islands. Frontiers in Marine Science, 5: 66. doi: 10.3389/fmars.2018.00066
|
[5] |
Barth A, Alvera-Azcárate A, Licer M, et al. 2020. DINCAE 1.0: a convolutional neural network with error estimates to reconstruct sea surface temperature satellite observations. Geoscientific Model Development, 13(3): 1609–1622. doi: 10.5194/gmd-13-1609-2020
|
[6] |
Corchado J M, Aiken J. 2002. Hybrid artificial intelligence methods in oceanographic forecast models. IEEE Transactions on Systems, 32(4): 307–313
|
[7] |
de Boyer Montégut C, Madec G, Fischer A S, et al. 2004. Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. Journal of Geophysical Research: Oceans, 109(C12): C12003. doi: 10.1029/2004JC002378
|
[8] |
Ducournau A, Fablet R. 2016. Deep learning for ocean remote sensing: an application of convolutional neural networks for super-resolution on satellite-derived SST data. In: Proceedings of the 9th IAPR Workshop on Pattern Recogniton in Remote Sensing. Cancun, Mexico: IEEE
|
[9] |
Fox D N, Teague W J, Barron C N, et al. 2002. The Modular Ocean Data Assimilation System (MODAS). Journal of Atmospheric and Oceanic Technology, 19(2): 240–252. doi: 10.1175/1520-0426(2002)019<0240:TMODAS>2.0.CO;2
|
[10] |
Ge Xuyang, Wang Wanqiu, Kumar A, et al. 2017. Importance of the vertical resolution in simulating SST diurnal and intraseasonal variability in an oceanic general circulation model. Journal of Climate, 30(11): 3963–3978. doi: 10.1175/JCLI-D-16-0689.1
|
[11] |
Goni G, Kamholz S, Garzoli S, et al. 1996. Dynamics of the Brazil-Malvinas Confluence based on inverted echo sounders and altimetry. Journal of Geophysical Research: Oceans, 101(C7): 16273–16289. doi: 10.1029/96JC01146
|
[12] |
Guinehut S, Dhomps A L, Larnicol G, et al. 2012. High resolution 3-D temperature and salinity fields derived from in situ and satellite observations. Ocean Science, 8(5): 845–857. doi: 10.5194/os-8-845-2012
|
[13] |
Han Mingxu, Feng Yuan, Zhao Xueli, et al. 2019. A convolutional neural network using surface data to predict subsurface temperatures in the Pacific Ocean. IEEE Access, 7: 172816–172829. doi: 10.1109/ACCESS.2019.2955957
|
[14] |
Hinton G E, Salakhutdinov R R. 2006. Reducing the dimensionality of data with neural networks. Science, 313(5786): 504–507. doi: 10.1126/science.1127647
|
[15] |
LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature, 521(7553): 436–444. doi: 10.1038/nature14539
|
[16] |
Lima E, Sun Xin, Dong Junyu, et al. 2017. Learning and transferring convolutional neural network knowledge to ocean front recognition. IEEE Geoscience and Remote Sensing Letters, 14(3): 354–358. doi: 10.1109/LGRS.2016.2643000
|
[17] |
Liu Qinyan, Zhou Wen. 2010. Relationship between typhoon activity in the northwestern Pacific and the up-per-ocean heat content on interdecadal time scale. Journal of Tropical Oceanography, 29(6): 8–14
|
[18] |
Long J, Shelhamer E, Darrell T. 2015. Fully convolutional networks for semantic segmentation. In: Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA: IEEE, 640–651
|
[19] |
Lu Wenfang, Su Hua, Yang Xin, et al. 2019. Subsurface temperature estimation from remote sensing data using a clustering-neural network method. Remote Sensing of Environment, 229: 213–222. doi: 10.1016/j.rse.2019.04.009
|
[20] |
Mandal S, Rao S, Raju D H. 2005. Ocean wave parameters estimation using backpropagation neural networks. Marine Structures, 18(3): 301–318. doi: 10.1016/j.marstruc.2005.09.002
|
[21] |
Pun I F, Lin I I, Ko D S. 2014. New generation of satellite-derived ocean thermal structure for the western North Pacific typhoon intensity forecasting. Progress in Oceanography, 121: 109–124. doi: 10.1016/j.pocean.2013.10.004
|
[22] |
Pun I F, Lin I I, Wu C R, et al. 2007. Validation and application of altimetry-derived upper ocean thermal structure in the western North Pacific Ocean for typhoon-intensity forecast. IEEE Transactions on Geoscience and Remote Sensing, 45(6): 1616–1630. doi: 10.1109/TGRS.2007.895950
|
[23] |
Pun I F, Price J F, Jayne S R. 2016. Satellite-derived ocean thermal structure for the North Atlantic Hurricane Season. Monthly Weather Review, 144(3): 877–896. doi: 10.1175/MWR-D-15-0275.1
|
[24] |
Rao A D, Joshi M, Jain I, et al. 2010. Response of subsurface waters in the eastern Arabian Sea to tropical cyclones. Estuarine, 89(4): 267–276
|
[25] |
Shang Xiaodong, Xu Chi, Chen Guiying, et al. 2013. Review on mechanical energy of ocean mesoscale eddies and associated energy sources and sinks. Journal of Tropical Oceanography, 32(2): 24–36
|
[26] |
Shay L K, Goni G J, Black P G. 2000. Effects of a warm oceanic feature on Hurricane Opal. Monthly Weather Review, 128(5): 1366–1383. doi: 10.1175/1520-0493(2000)128<1366:EOAWOF>2.0.CO;2
|
[27] |
Shroyer E L, Rudnick D L, Farrar J T, et al. 2016. Modification of upper-ocean temperature structure by subsurface mixing in the presence of strong salinity stratification. Oceanography, 29(2): 62–71. doi: 10.5670/oceanog.2016.39
|
[28] |
Song Tao, Jiang Jingyu, Li Wei, et al. 2020. A deep learning method with merged LSTM neural networks for SSHA prediction. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13: 2853–2860. doi: 10.1109/JSTARS.2020.2998461
|
[29] |
Su Hua, Li Wene, Yan Xiaohai. 2018. Retrieving temperature anomaly in the global subsurface and deeper ocean from satellite observations. Journal of Geophysical Research: Oceans, 123(1): 399–410. doi: 10.1002/2017JC013631
|
[30] |
Su Hua, Yang Xin, Lu Wenfang, et al. 2019. Estimating subsurface thermohaline structure of the global ocean using surface remote sensing observations. Remote Sensing, 11(13): 1598. doi: 10.3390/rs11131598
|
[31] |
Wu C C, Tu W T, Pun I F, et al. 2016. Tropical cyclone-ocean interaction in Typhoon Megi (2010)- A synergy study based on ITOP observations and atmosphere-ocean coupled model simulations. Journal of Geophysical Research: Atmospheres, 121(1): 153–167. doi: 10.1002/2015JD024198
|
[32] |
Yang Yuting, Dong Junyu, Sun Xin, et al. 2016. Ocean front detection from instant remote sensing SST images. IEEE Geoscience and Remote Sensing Letters, 13(12): 1960–1964. doi: 10.1109/LGRS.2016.2618941
|
[33] |
Yang Yuting, Dong Junyu, Sun Xin, et al. 2018. A CFCC-LSTM model for sea surface temperature prediction. IEEE Geoscience and Remote Sensing Letters, 15(2): 207–211. doi: 10.1109/LGRS.2017.2780843
|
[34] |
Zhang Kun, Geng Xupu, Yan Xiaohai. 2020. Prediction of 3-D ocean temperature by multilayer convolutional LSTM. IEEE Geoscience and Remote Sensing Letters, 17(8): 1303–1307. doi: 10.1109/LGRS.2019.2947170
|
[35] |
Zhao Ning, Han Zhen. 2015. A simulation model of seawater vertical temperature by using back-propagation neural network. Polish Maritime Research, 22(S1): 82–88. doi: 10.1515/pomr-2015-0037
|