Citation: | Yongjin Huang, Chunhui Tao, Jin Liang, Shili Liao, Yuan Wang, Dong Chen, Weifang Yang. Geological characteristics of the Qiaoyue Seamount and associated ultramafic-hosted seafloor hydrothermal system (~52.1°E, Southwest Indian Ridge)[J]. Acta Oceanologica Sinica, 2021, 40(11): 138-146. doi: 10.1007/s13131-021-1832-0 |
[1] |
Allen D E, Seyfried Jr W E. 2004. Serpentinization and heat generation: constraints from Lost City and Rainbow hydrothermal systems. Geochimica et Cosmochimica Acta, 68(6): 1347–1354. doi: 10.1016/j.gca.2003.09.003
|
[2] |
Baker E T, Chen Y J, Morgan J P. 1996. The relationship between near-axis hydrothermal cooling and the spreading rate of mid-ocean ridges. Earth and Planetary Science Letters, 142(1–2): 137–145. doi: 10.1016/0012-821x(96)00097-0
|
[3] |
Baker E T, Edmonds H N, Michael P J, et al. 2004. Hydrothermal venting in magma deserts: the ultraslow ‐ spreading Gakkel and Southwest Indian Ridges. Geochemistry, Geophysics, Geosystems, 5(8): Q08002. doi: 10.1029/2004gc000712
|
[4] |
Baker E T, German C R. 2004. On the global distribution of hydrothermal vent fields. In: German C R, Lin J, Parson L M, eds. Mid-Ocean Ridges: Hydrothermal Interactions Between the Lithosphere and Oceans. Washington, DC: American Geophysical Union, 245–266, doi: 10.1029/148gm10
|
[5] |
Baker E T, Hémond C, Briais A, et al. 2014. Correlated patterns in hydrothermal plume distribution and apparent magmatic budget along 2500 km of the Southeast Indian Ridge. Geochemistry, Geophysics, Geosystems, 15(8): 3198–3211. doi: 10.1002/2014gc005344
|
[6] |
Baker E T, Resing J A, Haymon R M, et al. 2016. How many vent fields? New estimates of vent field populations on ocean ridges from precise mapping of hydrothermal discharge locations. Earth and Planetary Science Letters, 449: 186–196. doi: 10.1016/j.jpgl.2016.05.031
|
[7] |
Beaulieu S E, Baker E T, German C R, et al. 2013. An authoritative global database for active submarine hydrothermal vent fields. Geochemistry, Geophysics, Geosystems, 14(11): 4892–4905. doi: 10.1002/2013gc004998
|
[8] |
Beaulieu S E, Baker E T, German C R. 2015. Where are the undiscovered hydrothermal vents on oceanic spreading ridges?. Deep-Sea Research Part II: Topical Studies in Oceanography, 121: 202–212. doi: 10.1016/j.dsr2.2015.05.001
|
[9] |
Buck W R, Lavier L L, Poliakov A N B. 2005. Modes of faulting at mid-ocean ridges. Nature, 434(7034): 719–723. doi: 10.1038/nature03358
|
[10] |
Canales J P, Tucholke B E, Xu M, et al. 2008. Seismic evidence for large-scale compositional heterogeneity of oceanic core complexes. Geochemistry, Geophysics, Geosystems, 9(8): Q08002. doi: 10.1029/2008GC002009
|
[11] |
Cannat M, Rommevaux-Jestin C, Sauter D. 1999. Formation of the axial relief at the very slow spreading Southwest Indian Ridge (49° to 69°E). Journal of Geophysical Research: Solid Earth, 104(B10): 22825–22843. doi: 10.1029/1999jb900195
|
[12] |
Cannat M, Sauter D, Bezos A, et al. 2008. Spreading rate, spreading obliquity, and melt supply at the ultraslow spreading Southwest Indian Ridge. Geochemistry, Geophysics, Geosystems, 9(4): Q04002. doi: 10.1029/2007gc001676
|
[13] |
Cannat M, Sauter D, Escartín J, et al. 2009. Oceanic corrugated surfaces and the strength of the axial lithosphere at slow spreading ridges. Earth and Planetary Science Letters, 288(1–2): 174–183. doi: 10.1016/j.jpgl.2009.09.020
|
[14] |
Cannat M, Sauter D, Lavier L, et al. 2019. On spreading modes and magma supply at slow and ultraslow mid-ocean ridges. Earth and Planetary Science Letters, 519: 223–233. doi: 10.1016/j.jpgl.2019.05.012
|
[15] |
Cannat M, Sauter D, Mendel V, et al. 2006. Modes of seafloor generation at a melt-poor ultraslow-spreading ridge. Geology, 34(7): 605–608. doi: 10.1130/g22486.1
|
[16] |
Chen Jie, Tao Chunhui, Liang Jin, et al. 2018. Newly discovered hydrothermal fields along the ultraslow-spreading Southwest Indian Ridge around 63°E. Acta Oceanologica Sinica, 37(11): 61–67. doi: 10.1007/s13131-018-1333-y
|
[17] |
Chen Sheng. 2016. The study of hydrothermal plume ore-prospecting criteria on the mid-ocean ridges (in Chinese)[dissertation]. Changchun: Jilin University
|
[18] |
Chen Sheng, Tao Chunhui, Li Huaiming, et al. 2014. A data processing method for MAPR hydrothermal plume turbidity data and its application in the Precious Stone Mountain hydrothermal field. Acta Oceanologica Sinica, 33(8): 34–43. doi: 10.1007/s13131-014-0406-9
|
[19] |
Chen Sheng, Tao Chunhui, Zhou Jianping, et al. 2019. The distribution characteristics of hydrothermal plume in mid-ocean ridge and its indicative role in polymetallic sulfide prospecting. Haiyang Xuebao (in Chinese), 41(8): 1–12. doi: 10.3969/j.issn.0253-4193.2019.08.002
|
[20] |
Coleman R G. 1971. Petrologic and geophysical nature of serpentinites. Geological Society of America Bulletin, 82(4): 897–918. doi: 10.1130/0016-7606(1971)82[897:pagnos]2.0.co;2
|
[21] |
Corliss J B, Dymond J, Gordon L I, et al. 1979. Submarine thermal springs on the Galápagos rift. Science, 203(4385): 1073–1083. doi: 10.1126/science.203.4385.1073
|
[22] |
Dekov V M, Garbe-Schönberg D, Kamenov G D, et al. 2018. Redox changes in a seafloor hydrothermal system recorded in hematite-chalcopyrite chimneys. Chemical Geology, 483: 351–371. doi: 10.1016/j.chemgeo.2018.02.041
|
[23] |
Dick H J B, Lin J, Schouten H. 2003. An ultraslow-spreading class of ocean ridge. Nature, 426(6965): 405–412. doi: 10.1038/nature02128
|
[24] |
Dick H J B, Natland J H, Alt J C, et al. 2000. A long in situ section of the lower ocean crust: results of ODP Leg 176 drilling at the Southwest Indian Ridge. Earth and Planetary Science Letters, 179(1): 31–51. doi: 10.1016/s0012-821x(00)00102-3
|
[25] |
Fouquet Y, Cambon P, Etoubleau J, et al. 2010. Geodiversity of hydrothermal processes along the Mid-Atlantic Ridge and ultramafic-hosted mineralization: a new type of oceanic Cu-Zn-Co-Au volcanogenic massive sulfide deposit. In: Rona P A, Devey C W, Dyment J, et al., eds. Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Washington, DC: American Geophysical Union, 321–367, doi: 10.1029/2008gm000746
|
[26] |
Georgen J E, Lin J, Dick H J B. 2001. Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspots with the Southwest Indian Ridge: effects of transform offsets. Earth and Planetary Science Letters, 187(3–4): 283–300. doi: 10.1016/s0012-821x(01)00293-x
|
[27] |
German C R, Baker E T, Klinkhammer G. 1995. Regional setting of hydrothermal activity. Geological Society, London, Special Publications, 87(1): 3–15. doi: 10.1144/gsl.sp.1995.087.01.02
|
[28] |
German C R, Baker E T, Mevel C, et al. 1998. Hydrothermal activity along the southwest Indian ridge. Nature, 395(6701): 490–493. doi: 10.1038/26730
|
[29] |
German C R, Bowen A, Coleman M L, et al. 2010. Diverse styles of submarine venting on the ultraslow spreading Mid-Cayman Rise. Proceedings of the National Academy of Sciences of the United States of America, 107(32): 14020–14025. doi: 10.1073/pnas.1009205107
|
[30] |
German C R, Petersen S, Hannington M D. 2016. Hydrothermal exploration of mid-ocean ridges: where might the largest sulfide deposits be forming?. Chemical Geology, 420: 114–126. doi: 10.1016/j.chemgeo.2015.11.006
|
[31] |
German C R, Yoerger D R, Jakuba M, et al. 2008. Hydrothermal exploration with the Autonomous Benthic Explorer. Deep-Sea Research Part I: Oceanographic Research Papers, 55(2): 203–219. doi: 10.1016/j.dsr.2007.11.004
|
[32] |
Han Xiqiu, Wu Guanghai, Cui R, et al. 2010. Discovery of a hydrothermal sulfide deposit on the Southwest Indian Ridge at 49.2°E. In: American Geophysical Union Fall Meeting 2010. San Francisco: AGU.
|
[33] |
Hannington M, Jamieson J, Monecke T, et al. 2011. The abundance of seafloor massive sulfide deposits. Geology, 39(12): 1155–1158. doi: 10.1130/g32468.1
|
[34] |
Hasenclever J, Theissen-Krah S, Rüpke L H, et al. 2014. Hybrid shallow on-axis and deep off-axis hydrothermal circulation at fast-spreading ridges. Nature, 508(7497): 508–512. doi: 10.1038/nature13174
|
[35] |
Jian Hanchao, Singh S C, Chen Y J. 2017. Evidence of an axial magma chamber beneath the ultraslow-spreading Southwest Indian Ridge. Geology, 45(2): 143–146. doi: 10.1130/g38356.1
|
[36] |
Kolla V, Bé A W H, Biscaye P E. 1976. Calcium carbonate distribution in the surface sediments of the Indian Ocean. Journal of Geophysical Research, 81(15): 2605–2616. doi: 10.1029/jc081i015p02605
|
[37] |
Li Jiabiao, Jian Hanchao, Chen Y J, et al. 2015. Seismic observation of an extremely magmatic accretion at the ultraslow spreading Southwest Indian Ridge. Geophysical Research Letters, 42(8): 2656–2663. doi: 10.1002/2014gl062521
|
[38] |
Li Huaiming, Tao Chunhui, Yue Xihe, et al. 2020. Enhanced hydrothermal activity on an ultraslow-spreading supersegment with a seismically detected melting anomaly. Marine Geology, 430: 106335. doi: 10.1016/j.margeo.2020.106335
|
[39] |
Liu Chiheng. 2019. Tectono-magmatic characteristics of the Southwest Indian Ridge 46~52.5°E and its dynamic formation mechanism (in Chinese)[dissertation]. Beijing: Peking University
|
[40] |
Liu Zhonglan, Buck W G. 2018. Magmatic controls on axial relief and faulting at mid-ocean ridges. Earth and Planetary Science Letters, 491: 226–237. doi: 10.1016/j.jpgl.2018.03.045
|
[41] |
Liu Zhonglan, Buck W R. 2020. Global trends of axial relief and faulting at plate spreading centers imply discrete magmatic events. Journal of Geophysical Research: Solid Earth, 125(8): e2020JB019465. doi: 10.1029/2020JB019465
|
[42] |
Lowell R P. 2010. Hydrothermal circulation at slow spreading ridges: analysis of heat sources and heat transfer processes. In: Rona P A, Devey C W, Dyment J, et al., eds. Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Washington, DC: American Geophysical Union, 11–26, doi: 10.1029/2008gm000758
|
[43] |
Lowell R P. 2017. A fault-driven circulation model for the Lost City Hydrothermal Field. Geophysical Research Letters, 44(6): 2703–2709. doi: 10.1002/2016GL072326
|
[44] |
MacLeod C J, Searle R C, Murton B J, et al. 2009. Life cycle of oceanic core complexes. Earth and Planetary Science Letters, 287(3–4): 333–344. doi: 10.1016/j.jpgl.2009.08.016
|
[45] |
Manatschal G, Sauter D, Karpoff A M, et al. 2011. The chenaillet ophiolite in the French/Italian alps: an ancient analogue for an oceanic core complex?. Lithos, 124(3–4): 169–184. doi: 10.1016/j.lithos.2010.10.017
|
[46] |
McCave I N, Kiefer T, Thornalley D J R, et al. 2005. Deep flow in the Madagascar-Mascarene Basin over the last 150000 years. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 363(1826): 81–99. doi: 10.1098/rsta.2004.1480
|
[47] |
Melchert B, Devey C W, German C R, et al. 2008. First evidence for high-temperature off-axis venting of deep crustal/mantle heat: The Nibelungen hydrothermal field, southern Mid-Atlantic Ridge. Earth and Planetary Science Letters, 275(1–2): 61–69. doi: 10.1016/j.jpgl.2008.08.010
|
[48] |
Mendel V, Sauter D, Rommevaux-Jestin C, et al. 2003. Magmato-tectonic cyclicity at the ultra ‐ slow spreading Southwest Indian Ridge: evidence from variations of axial volcanic ridge morphology and abyssal hills pattern. Geochemistry, Geophysics, Geosystems, 4(5): 9102. doi: 10.1029/2002gc000417
|
[49] |
Muller M R, Minshull T A, White R S. 1999. Segmentation and melt supply at the Southwest Indian Ridge. Geology, 27(10): 867–870. doi: 10.1130/0091-7613(1999)027<0867:samsat>2.3.co;2
|
[50] |
Olive J A, Behn M D, Ito G, et al. 2015. Sensitivity of seafloor bathymetry to climate-driven fluctuations in mid-ocean ridge magma supply. Science, 350(6258): 310–313. doi: 10.1126/science.aad0715
|
[51] |
Pertsev A N, Bortnikov N S, Vlasov E A, et al. 2012. Recent massive sulfide deposits of the Semenov ore district, Mid-Atlantic Ridge, 13°31′ N: associated rocks of the oceanic core complex and their hydrothermal alteration. Geology of Ore Deposits, 54(5): 334–346. doi: 10.1134/s1075701512050030
|
[52] |
Petersen S, Kuhn K, Kuhn T, et al. 2009. The geological setting of the ultramafic-hosted Logatchev hydrothermal field (14°45′N, Mid-Atlantic Ridge) and its influence on massive sulfide formation. Lithos, 112(1–2): 40–56. doi: 10.1016/j.lithos.2009.02.008
|
[53] |
Reston T. 2018. Flipping detachments: the kinematics of ultraslow spreading ridges. Earth and Planetary Science Letters, 503: 144–157. doi: 10.1016/j.jpgl.2018.09.032
|
[54] |
Sauter D, Cannat M, Meyzen C, et al. 2009. Propagation of a melting anomaly along the ultraslow Southwest Indian Ridge between 46°E and 52°20′E: interaction with the Crozet hotspot?. Geophysical Journal International, 179(2): 687–699. doi: 10.1111/j.1365-246x.2009.04308.x
|
[55] |
Sauter D, Cannat M, Rouméjon S, et al. 2013. Continuous exhumation of mantle-derived rocks at the Southwest Indian Ridge for 11 million years. Nature Geoscience, 6(4): 314–320. doi: 10.1038/ngeo1771
|
[56] |
Sauter D, Patriat P, Rommevaux-Jestin C, et al. 2001. The Southwest Indian Ridge between 49°15′E and 57°E: focused accretion and magma redistribution. Earth and Planetary Science Letters, 192(3): 303–317. doi: 10.1016/s0012-821x(01)00455-1
|
[57] |
Schmale O, Walter M, von Deimling J S, et al. 2012. Fluid and gas fluxes from the Logatchev hydrothermal vent area. Geochemistry, Geophysics, Geosystems, 13(7): Q07007. doi: 10.1029/2012gc004158
|
[58] |
Sekhar P, Lowell R P. 2015. Numerical modeling of brine formation and serpentinization at the rainbow hydrothermal system. In: American Geophysical Union, Fall Meeting 2015. San Francisco: AGU
|
[59] |
Son J, Pak S J, Kim J, et al. 2014. Tectonic and magmatic control of hydrothermal activity along the slow-spreading Central Indian Ridge, 8°S–17°S. Geochemistry, Geophysics, Geosystems, 15(5): 2011–2020. doi: 10.1002/2013GC005206
|
[60] |
Tao Chunhui, Chen Sheng, Baker E T, et al. 2017. Hydrothermal plume mapping as a prospecting tool for seafloor sulfide deposits: a case study at the Zouyu-1 and Zouyu-2 hydrothermal fields in the southern Mid-Atlantic Ridge. Marine Geophysical Research, 38(1–2): 3–16. doi: 10.1007/s11001-016-9275-2
|
[61] |
Tao Chunhui, Li Huaiming, Huang Wei, et al. 2011. Mineralogical and geochemical features of sulfide chimneys from the 49°39′E hydrothermal field on the Southwest Indian Ridge and their geological inferences. Chinese Science Bulletin, 56(26): 2828–2838. doi: 10.1007/s11434-011-4619-4
|
[62] |
Tao Chunhui, Li Huaiming, Jin Xiaobing, et al. 2014. Seafloor hydrothermal activity and polymetallic sulfide exploration on the southwest Indian ridge. Chinese Science Bulletin, 59(19): 2266–2276. doi: 10.1007/s11434-014-0182-0
|
[63] |
Tao Chunhui, Lin Jian, Guo Shiqin, et al. 2012. First active hydrothermal vents on an ultraslow-spreading center: southwest Indian Ridge. Geology, 40(1): 47–50. doi: 10.1130/G32389.1
|
[64] |
Tao Chunhui, Seyfried Jr W E, Lowell R P, et al. 2020. Deep high-temperature hydrothermal circulation in a detachment faulting system on the ultra-slow spreading ridge. Nature Communications, 11(1): 1300. doi: 10.1038/s41467-020-15062-w
|
[65] |
Tao Chunhui, Wu Guanghai, Ni Jun, et al. 2009. New hydrothermal fields found along the SWIR during the Legs 5-7 of the Chinese DY115-20 Expedition. In: American Geophysical Union Fall Meeting 2009. San Francisco: AGU
|
[66] |
Tucholke B E, Behn M D, Buck W R, et al. 2008. Role of melt supply in oceanic detachment faulting and formation of megamullions. Geology, 36(6): 455–458. doi: 10.1130/g24639a.1
|
[67] |
Wang Hu, Resing J A, Yan Qiaoyang, et al. 2021. The characteristics of Fe speciation and Fe-binding ligands in the Mariana back-arc hydrothermal plumes. Geochimica et Cosmochimica Acta, 292: 24–36. doi: 10.1016/j.gca.2020.09.016
|
[68] |
Wilcock W S D, Fisher A T. 2004. Geophysical constraints on the subseafloor environment near mid-ocean ridges. In: Wilcock W S D, Delong E F, Kelley D S, et al., eds. The Subseafloor Biosphere at Mid-Ocean Ridges. Washington, DC: American Geophysical Union, 51–74, doi: 10.1029/144gm05
|
[69] |
Yang Weifang, Tao Chunhui, Li Huaiming, et al. 2017. 230Th/238U dating of hydrothermal sulfides from Duanqiao hydrothermal field, Southwest Indian Ridge. Marine Geophysical Research, 38(1–2): 71–83. doi: 10.1007/s11001-016-9279-y
|
[70] |
Yue Xihe, Li Huaiming, Ren Jianye, et al. 2019. Seafloor hydrothermal activity along mid-ocean ridge with strong melt supply: study from segment 27, southwest Indian ridge. Scientific Reports, 9(1): 9874. doi: 10.1038/s41598-019-46299-1
|
[71] |
Zhou Huaiyang, Dick H J B. 2013. Thin crust as evidence for depleted mantle supporting the Marion Rise. Nature, 494(7436): 195–200. doi: 10.1038/nature11842
|