Volume 40 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
Mengmeng Li, Zhiliang Liu, Jianing Li, Chongguang Pang. Characteristics of oceanic mesoscale variabilities associated with the inverse kinetic energy cascade[J]. Acta Oceanologica Sinica, 2021, 40(7): 42-57. doi: 10.1007/s13131-021-1814-2
Citation: Mengmeng Li, Zhiliang Liu, Jianing Li, Chongguang Pang. Characteristics of oceanic mesoscale variabilities associated with the inverse kinetic energy cascade[J]. Acta Oceanologica Sinica, 2021, 40(7): 42-57. doi: 10.1007/s13131-021-1814-2

Characteristics of oceanic mesoscale variabilities associated with the inverse kinetic energy cascade

doi: 10.1007/s13131-021-1814-2
Funds:  The National Key R&D Program of China under contract Nos 2016YFC0301203 and 2019YFC1407903; the Natural Science Foundation of Hebei Province under contract No. D2019407046; the Hebei Science and Technology Project under contract No. 19273301D; the NSFC-Shangdong Province Joint Fund under contract No. U1406401.
More Information
  • Corresponding author: Email: zhlliu3897@hevttc.edu.cn
  • Received Date: 2020-10-06
  • Accepted Date: 2021-01-09
  • Available Online: 2021-06-23
  • Publish Date: 2021-07-25
  • Oceanic geostrophic turbulence theory predicts significant inverse kinetic energy (KE) cascades at scales larger than the energy injection wavelength. However, the characteristics of the mesoscale variabilities associated with the inverse KE cascade in the real oceans have not been clear enough up to now. To further examine this problem, we analyzed the spectral characteristics of the oceanic mesoscale motions over the scales of inverse KE cascades based on high-resolution gridded altimeter data. The applicability of the quasigeostrophic (QG) turbulence theory and the surface quasigeostrophic (SQG) turbulence theory in real oceans is further explored. The results show that the sea surface height (SSH) spectral slope is linearly related to the eddy-kinetic-energy (EKE) level with a high correlation coefficient value of 0.67. The findings also suggest that the QG turbulence theory is an appropriate dynamic framework at the edge of high-EKE regions and that the SQG theory is more suitable in tropical regions and low-EKE regions at mid-high latitudes. New anisotropic characteristics of the inverse KE cascade are also provided. These results indicate that the along-track spectrum used by previous studies cannot reveal the dynamics of the mesoscale variabilities well.
  • A “red (blue)” spectrum is defined as a spectrum in which the power density decreases (increases) with the wavenumber.
  • loading
  • [1]
    Arbic B K, Flierl G R. 2004. Baroclinically unstable geostrophic turbulence in the limits of strong and weak bottom Ekman friction: application to midocean eddies. Journal of Physical Oceanography, 34(10): 2257–2273. doi: 10.1175/1520-0485(2004)034<2257:BUGTIT>2.0.CO;2
    [2]
    Batchelor G K. 1969. Computation of the energy spectrum in homogeneous two-dimensional turbulence. The Physics of Fluids, 12(12): II-233–II-239
    [3]
    Blumen W. 1978. Uniform potential vorticity flow: part I. Theory of wave interactions and two-dimensional turbulence. Journal of the Atmospheric Sciences, 35(5): 774–783
    [4]
    Bourles B, Molinari R L, Johns E, et al. 1999. Upper layer currents in the western tropical North Atlantic (1989–1991). Journal of Geophysical Research: Oceans, 104(C1): 1361–1375. doi: 10.1029/1998JC900025
    [5]
    Charney J G. 1971. Geostrophic turbulence. Journal of the Atmospheric Sciences, 28(6): 1087–1095. doi: 10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2
    [6]
    Chelton D B, deSzoeke R A, Schlax M G, et al. 1998. Geographical variability of the first baroclinic rossby radius of deformation. Journal of Physical Oceanography, 28(3): 433–460. doi: 10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2
    [7]
    Chelton D B, Schlax M G, Samelson R M, et al. 2007. Global observations of large oceanic eddies. Geophysical Research Letters, 34(15): L15606
    [8]
    Chelton D B, Schlax M G, Samelson R M. 2011. Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2): 167–216. doi: 10.1016/j.pocean.2011.01.002
    [9]
    Eden C. 2007. Eddy length scales in the North Atlantic Ocean. Journal of Geophysical Research: Oceans, 112(C6): C06004
    [10]
    Ferrari R, Wunsch C. 2009. Ocean circulation kinetic energy: reservoirs, sources, and sinks. Annual Review of Fluid Mechanics, 41: 253–282. doi: 10.1146/annurev.fluid.40.111406.102139
    [11]
    Fu L L. 1983. On the wave number spectrum of oceanic mesoscale variability observed by the SEASAT altimeter. Journal of Geophysical Research: Oceans, 88(C7): 4331–4341. doi: 10.1029/JC088iC07p04331
    [12]
    Fu L L. 2004. Latitudinal and frequency characteristics of the westward propagation of large-scale oceanic variability. Journal of Physical Oceanography, 34(8): 1907–1921. doi: 10.1175/1520-0485(2004)034<1907:LAFCOT>2.0.CO;2
    [13]
    Galperin B, Sukoriansky S, Dikovskaya N. 2010. Geophysical flows with anisotropic turbulence and dispersive waves: flows with a β-effect. Ocean Dynamics, 60(2): 427–441. doi: 10.1007/s10236-010-0278-2
    [14]
    Held I M, Pierrehumbert R T, Garner S T, et al. 1995. Surface quasi-geostrophic dynamics. Journal of Fluid Mechanics, 282: 1–20. doi: 10.1017/S0022112095000012
    [15]
    Jacobs G A, Barron C N, Rhodes R C. 2001. Mesoscale characteristics. Journal of Geophysical Research: Oceans, 106(C9): 19581–19595. doi: 10.1029/2000JC000669
    [16]
    Khatri H, Sukhatme J, Kumar A, et al. 2018. Surface ocean enstrophy, kinetic energy fluxes, and spectra from satellite altimetry. Journal of Geophysical Research: Oceans, 123(5): 3875–3892. doi: 10.1029/2017JC013516
    [17]
    Kobashi F, Kawamura H. 2002. Seasonal variation and instability nature of the North Pacific Subtropical Countercurrent and the Hawaiian Lee Countercurrent. Journal of Geophysical Research: Oceans, 107(C11): 3185. doi: 10.1029/2001JC001225
    [18]
    Kraichnan R H. 1967. Inertial ranges in two-dimensional turbulence. Physics of Fluids, 10(7): 1417–1423. doi: 10.1063/1.1762301
    [19]
    Le Traon P Y, Klein P, Hua B L, et al. 2008. Do altimeter wavenumber spectra agree with the interior or surface quasigeostrophic theory?. Journal of Physical Oceanography, 38(5): 1137–1142. doi: 10.1175/2007JPO3806.1
    [20]
    Le Traon P Y, Nadal F, Ducet N. 1998. An improved mapping method of multisatellite altimeter data. Journal of Atmospheric and Oceanic Technology, 15(2): 522–534. doi: 10.1175/1520-0426(1998)015<0522:AIMMOM>2.0.CO;2
    [21]
    Le Traon P Y, Rouquet M C, Boissier C. 1990. Spatial scales of mesoscale variability in the North Atlantic as deduced from Geosat data. Journal of Geophysical Research: Oceans, 95(C11): 20267–20285. doi: 10.1029/JC095iC11p20267
    [22]
    Leith C E. 1968. Diffusion approximation for two-dimensional turbulence. The Physics of Fluids, 11(3): 671–672
    [23]
    Liu Zhiliang, Pang Chongguang. 2017. The Rhines effect on the geographical characteristics of altimeter-observed eddies. Acta Oceanologica Sinica, 36(9): 10–14. doi: 10.1007/s13131-017-1105-0
    [24]
    Montgomery D C, Peck E A, Vining G G. 2001. Introduction to Linear Regression Analysis. 3rd ed. New York: Wiley
    [25]
    Pascual A, Faugère Y, Larnicol G, et al. 2006. Improved description of the ocean mesoscale variability by combining four satellite altimeters. Geophysical Research Letters, 33(2): L02611
    [26]
    Peterson R G, Stramma L. 1991. Upper-level circulation in the South Atlantic Ocean. Progress in Oceanography, 26(1): 1–73. doi: 10.1016/0079-6611(91)90006-8
    [27]
    Pujol M I, Faugère Y, Taburet G, et al. 2016. DUACS DT2014: the new multi-mission altimeter data set reprocessed over 20 years. Ocean Science Discussions, 12(5): 1067–1090. doi: 10.5194/os-12-1067-2016
    [28]
    Qiu Bo, Chen Shuiming. 2004. Seasonal modulations in the eddy field of the South Pacific Ocean. Journal of Physical Oceanography, 34(7): 1515–1527. doi: 10.1175/1520-0485(2004)034<1515:SMITEF>2.0.CO;2
    [29]
    Qiu Bo, Scott R B, Chen Shuiming. 2008. Length scales of eddy generation and nonlinear evolution of the seasonally modulated South Pacific Subtropical Countercurrent. Journal of Physical Oceanography, 38(7): 1515–1528. doi: 10.1175/2007JPO3856.1
    [30]
    Rhines P B. 1975. Waves and turbulence on a beta-plane. Journal of Fluid Mechanics, 69(3): 417–443. doi: 10.1017/S0022112075001504
    [31]
    Rhines P B. 1979. Geostrophic turbulence. Annual Review of Fluid Mechanics, 11: 401–441. doi: 10.1146/annurev.fl.11.010179.002153
    [32]
    Salmon R. 1998. Lectures on Geophysical Fluid Dynamics. New York: Oxford University Press, 378
    [33]
    Scott R B, Wang Faming. 2005. Direct evidence of an oceanic inverse kinetic energy cascade from satellite altimetry. Journal of Physical Oceanography, 35(9): 1650–1666. doi: 10.1175/JPO2771.1
    [34]
    Smith K S. 2007. The geography of linear baroclinic instability in Earth’s oceans. Journal of Marine Research, 65(5): 655–683. doi: 10.1357/002224007783649484
    [35]
    Spall M A. 2000. Generation of strong mesoscale eddies by weak ocean gyres. Journal of Marine Research, 58(1): 97–116. doi: 10.1357/002224000321511214
    [36]
    Stammer D. 1997. Global characteristics of ocean variability estimated from regional TOPEX/Poseidon altimeter measurements. Journal of Physical Oceanography, 27(8): 1743–1769. doi: 10.1175/1520-0485(1997)027<1743:GCOOVE>2.0.CO;2
    [37]
    Stewart R H, Shum C K, Tapley B, et al. 1996. Statistics of geostrophic turbulence in the Southern Ocean from satellite altimetry and numerical models. Physica D: Nonlinear Phenomena, 98(2–4): 599–613
    [38]
    Stewart K D, Spence P, Waterman S, et al. 2015. Anisotropy of eddy variability in the global ocean. Ocean Modelling, 95: 53–65. doi: 10.1016/j.ocemod.2015.09.005
    [39]
    Tchilibou M, Gourdeau L, Morrow R, et al. 2018. Spectral signatures of the tropical Pacific dynamics from model and altimetry: a focus on the meso-/submesoscale range. Ocean Science, 14(5): 1283–1301. doi: 10.5194/os-14-1283-2018
    [40]
    Theiss J. 2004. Equatorward energy cascade, critical latitude, and the predominance of cyclonic vortices in geostrophic turbulence. Journal of Physical Oceanography, 34(7): 1663–1678. doi: 10.1175/1520-0485(2004)034<1663:EECCLA>2.0.CO;2
    [41]
    Tulloch R, Marshall J, Hill C, et al. 2011. Scales, growth rates, and spectral fluxes of baroclinic instability in the ocean. Journal of Physical Oceanography, 41(6): 1057–1076. doi: 10.1175/2011JPO4404.1
    [42]
    Vallis G K. 2007. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-scale Circulation. Cambridge: Cambridge University Press, 770
    [43]
    Vallis G K, Maltrud M E. 1993. Generation of mean flows and jets on a beta plane and over topography. Journal of Physical Oceanography, 23(7): 1346–1362. doi: 10.1175/1520-0485(1993)023<1346:GOMFAJ>2.0.CO;2
    [44]
    Vergara O, Morrow R, Pujol I, et al. 2019. Revised global wave number spectra from recent altimeter observations. Journal of Geophysical Research: Oceans, 124(6): 3523–3537. doi: 10.1029/2018JC014844
    [45]
    Wang Dongping, Flagg C N, Donohue K, et al. 2010. Wavenumber spectrum in the gulf stream from shipboard ADCP observations and comparison with altimetry measurements. Journal of Physical Oceanography, 40(4): 840–844. doi: 10.1175/2009JPO4330.1
    [46]
    Wang Shihong, Liu Zhiliang, Pang Chongguang. 2015. Geographical distribution and anisotropy of the inverse kinetic energy cascade, and its role in the eddy equilibrium processes. Journal of Geophysical Research: Oceans, 120(7): 4891–4906. doi: 10.1002/2014JC010476
    [47]
    Wang Shihong, Qiao Fangli, Dai Dejun, et al. 2019. Anisotropy of the sea surface height wavenumber spectrum from altimeter observations. Scientific Reports, 9(1): 15896. doi: 10.1038/s41598-019-52328-w
    [48]
    Wortham IV C J L. 2013. A multi-dimensional spectral description of ocean variability with applications [dissertation]. Woods Hole: Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 184
    [49]
    Xu Yongsheng, Fu L L. 2011. Global variability of the wavenumber spectrum of oceanic mesoscale turbulence. Journal of Physical Oceanography, 41(4): 802–809. doi: 10.1175/2010JPO4558.1
    [50]
    Xu Yongsheng, Fu L L. 2012. The effects of altimeter instrument noise on the estimation of the wavenumber spectrum of sea surface height. Journal of Physical Oceanography, 42(12): 2229–2233. doi: 10.1175/JPO-D-12-0106.1
    [51]
    Zhou Xiaohui, Wang Dongping, Chen Dake. 2015. Global wavenumber spectrum with corrections for altimeter high-frequency noise. Journal of Physical Oceanography, 45(2): 495–503. doi: 10.1175/JPO-D-14-0144.1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article Metrics

    Article views (861) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return