Citation: | Fuqiang Wang, Ying Wu, Lin Zhang, Jie Jin, Zuozhi Chen, Jun Zhang, Wing-man Lee. Improved method for measuring the δ15N compound-specific amino acids: Application on mesopelagic fishes in the South China Sea[J]. Acta Oceanologica Sinica, 2022, 41(1): 30-38. doi: 10.1007/s13131-021-1812-4 |
[1] |
Arthur K E, Kelez S, Larsen T, et al. 2014. Tracing the biosynthetic source of essential amino acids in marine turtles using δ13C fingerprints. Ecology, 95(5): 1285–1293. doi: 10.1890/13-0263.1
|
[2] |
Bec A, Perga M E, Koussoroplis A, et al. 2011. Assessing the reliability of fatty acid–specific stable isotope analysis for trophic studies. Methods in Ecology and Evolution, 2(6): 651–659. doi: 10.1111/j.2041-210X.2011.00111.x
|
[3] |
Bode A, Hernández-León S. 2018. Trophic diversity of plankton in the epipelagic and mesopelagic layers of the tropical and equatorial atlantic determined with stable isotopes. Diversity, 10(2): 48. doi: 10.3390/d10020048
|
[4] |
Bothner-By A, Friedman L. 1952. The reaction of nitrous acid with hydroxylamine. The Journal of Chemical Physics, 20(3): 459–462. doi: 10.1063/1.1700442
|
[5] |
Bradley C J, Wallsgrove N J, Choy C A, et al. 2015. Trophic position estimates of marine teleosts using amino acid compound specific isotopic analysis. Limnology and Oceanography: Methods, 13(9): 476–493. doi: 10.1002/lom3.10041
|
[6] |
Braeckman U, Provoost P, Sabbe K, et al. 2015. Temporal dynamics in a shallow coastal benthic food web: insights from fatty acid biomarkers and their stable isotopes. Marine Environmental Research, 108: 55–68. doi: 10.1016/j.marenvres.2015.04.010
|
[7] |
Broek T A B, McCarthy M D. 2014. A new approach to δ15N compound-specific amino acid trophic position measurements: preparative high pressure liquid chromatography technique for purifying underivatized amino acids for stable isotope analysis. Limnology and Oceanography: Methods, 12(12): 840–852. doi: 10.4319/lom.2014.12.840
|
[8] |
Broek T A, Walker B D, Andreasen D H, et al. 2013. High-precision measurement of phenylalanine δ15N values for environmental samples: a new approach coupling high-pressure liquid chromatography purification and elemental analyzer isotope ratio mass spectrometry. Rapid Communications in Mass Spectrometry, 27(21): 2327–2337. doi: 10.1002/rcm.6695
|
[9] |
Budge S M, AuCoin L R, Ziegler S E, et al. 2016. Fractionation of stable carbon isotopes of tissue fatty acids in Atlantic pollock (Pollachius virens). Ecosphere, 7(8): e01437
|
[10] |
Budge S M, Wooller M J, Springer A M, et al. 2008. Tracing carbon flow in an arctic marine food web using fatty acid-stable isotope analysis. Oecologia, 157(1): 117–129. doi: 10.1007/s00442-008-1053-7
|
[11] |
Caut S, Angulo E, Courchamp F. 2009. Variation in discrimination factors (Δ15N and Δ13C): the effect of diet isotopic values and applications for diet reconstruction. Journal of Applied Ecology, 46(2): 443–453. doi: 10.1111/j.1365-2664.2009.01620.x
|
[12] |
Chikaraishi Y, Ogawa N O, Kashiyama Y, et al. 2009. Determination of aquatic food-web structure based on compound-specific nitrogen isotopic composition of amino acids. Limnology and Oceanography: Methods, 7(11): 740–750. doi: 10.4319/lom.2009.7.740
|
[13] |
Choy C A, Davison P C, Drazen J C, et al. 2012. Global trophic position comparison of two dominant mesopelagic fish families (Myctophidae, Stomiidae) using amino acid nitrogen isotopic analyses. PLoS ONE, 7(11): e50133. doi: 10.1371/journal.pone.0050133
|
[14] |
Choy C A, Popp B N, Hannides C C S, et al. 2015. Trophic structure and food resources of epipelagic and mesopelagic fishes in the North Pacific Subtropical Gyre ecosystem inferred from nitrogen isotopic compositions. Limnology and Oceanography, 60(4): 1156–1171. doi: 10.1002/lno.10085
|
[15] |
Décima M, Landry M R, Bradley C J, et al. 2017. Alanine δ15N trophic fractionation in heterotrophic protists. Limnology and Oceanography, 62(5): 2308–2322. doi: 10.1002/lno.10567
|
[16] |
Gerringer M E, Popp B N, Linley T D, et al. 2017. Comparative feeding ecology of abyssal and hadal fishes through stomach content and amino acid isotope analysis. Deep-Sea Research Part I: Oceanographic Research Papers, 121: 110–120. doi: 10.1016/j.dsr.2017.01.003
|
[17] |
Gladyshev M I, Makhutova O N, Kravchuk E S, et al. 2016. Stable isotope fractionation of fatty acids of Daphnia fed laboratory cultures of microalgae. Limnologica, 56: 23–29. doi: 10.1016/j.limno.2015.12.001
|
[18] |
Hannides C C S, Popp B N, Choy C A, et al. 2013. Midwater zooplankton and suspended particle dynamics in the North Pacific Subtropical Gyre: a stable isotope perspective. Limnology and Oceanography, 58(6): 1931–1946. doi: 10.4319/lo.2013.58.6.1931
|
[19] |
Hetherington E D, Olson R J, Drazen J C, et al. 2017. Spatial food-web structure in the eastern tropical Pacific Ocean based on compound-specific nitrogen isotope analysis of amino acids. Limnology and Oceanography, 62(2): 541–560. doi: 10.1002/lno.10443
|
[20] |
Hussey N E, MacNeil M A, McMeans B C, et al. 2014. Rescaling the trophic structure of marine food webs. Ecology Letters, 17(2): 239–250. doi: 10.1111/ele.12226
|
[21] |
Ishikawa N F, Chikaraishi Y, Takano Y, et al. 2018a. A new analytical method for determination of the nitrogen isotopic composition of methionine: Its application to aquatic ecosystems with mixed resources. Limnology and Oceanography: Methods, 16(9): 607–620. doi: 10.1002/lom3.10272
|
[22] |
Ishikawa N F, Itahashi Y, Blattmann T M, et al. 2018b. Improved method for isolation and purification of underivatized amino acids for radiocarbon analysis. Analytical Chemistry, 90(20): 12035–12041. doi: 10.1021/acs.analchem.8b02693
|
[23] |
Jin Jie, Jiang Shan, Zhang Jing. 2020. Nitrogen isotopic analysis of nitrate in aquatic environment using cadmium-hydroxylamine hydrochloride reduction. Rapid Communications in Mass Spectrometry, 34(12): e8804
|
[24] |
Landry M R, Décima M R, Plourde S. 2017. Protistan microzooplankton and the trophic position of tuna: quantifying the trophic link between micro- and mesozooplankton in marine foodwebs. ICES Journal of Marine Science, 74(7): 1885–1892. doi: 10.1093/icesjms/fsx006
|
[25] |
Liu Dongwei, Fang Yunting, Tu Ying, et al. 2014. Chemical method for nitrogen isotopic analysis of ammonium at natural abundance. Analytical Chemistry, 86(8): 3787–3792. doi: 10.1021/ac403756u
|
[26] |
McCarthy M D, Benner R, Lee C, et al. 2007. Amino acid nitrogen isotopic fractionation patterns as indicators of heterotrophy in plankton, particulate, and dissolved organic matter. Geochimica et Cosmochimica Acta, 71(19): 4727–4744. doi: 10.1016/j.gca.2007.06.061
|
[27] |
McCarthy M D, Lehman J, Kudela R. 2013. Compound-specific amino acid δ15N patterns in marine algae: tracer potential for cyanobacterial vs. eukaryotic organic nitrogen sources in the ocean. Geochimica et Cosmochimica Acta, 103: 104–120. doi: 10.1016/j.gca.2012.10.037
|
[28] |
McClelland J W, Montoya J P. 2002. Trophic relationships and the nitrogen isotopic composition of amino acids in plankton. Ecology, 83(8): 2173–2180. doi: 10.1890/0012-9658(2002)083[2173:TRATNI]2.0.CO;2
|
[29] |
McMahon K W, McCarthy M D. 2016. Embracing variability in amino acid δ15N fractionation: mechanisms, implications, and applications for trophic ecology. Ecosphere, 7(12): e01511
|
[30] |
McMahon K W, Newsome S D. 2019. Amino acid isotope analysis: a new frontier in studies of animal migration and foraging ecology. In: Hobson K A, Wassenaar L I, eds. Tracking Animal Migration with Stable Isotopes. 2nd ed. London, UK: Academic Press, 173–190
|
[31] |
McMahon K W, Thorrold S R, Elsdon T S, et al. 2015. Trophic discrimination of nitrogen stable isotopes in amino acids varies with diet quality in a marine fish. Limnology and Oceanography, 60(3): 1076–1087. doi: 10.1002/lno.10081
|
[32] |
Ohkouchi N, Chikaraishi Y, Close H G, et al. 2017. Advances in the application of amino acid nitrogen isotopic analysis in ecological and biogeochemical studies. Organic Geochemistry, 113: 150–174. doi: 10.1016/j.orggeochem.2017.07.009
|
[33] |
Popp B N, Graham B S, Olson R J, et al. 2007. Insight into the trophic ecology of yellowfin tuna, Thunnus albacares, from compound-specific nitrogen isotope analysis of proteinaceous amino acids. Terrestrial Ecology, 1: 173–190
|
[34] |
Schonberg A, Moubacher R. 1952. The strecker degradation of α-amino acids. Chemical Reviews, 50(2): 261–277. doi: 10.1021/cr60156a002
|
[35] |
Sherwood O A, Guilderson T P, Batista F C, et al. 2014. Increasing subtropical North Pacific Ocean nitrogen fixation since the Little Ice Age. Nature, 505(7481): 78–81. doi: 10.1038/nature12784
|
[36] |
Sherwood O A, Lehmann M F, Schubert C J, et al. 2011. Nutrient regime shift in the western North Atlantic indicated by compound-specific δ15N of deep-sea gorgonian corals. Proceedings of the National Academy of Sciences of the United States of America, 108(3): 1011–1015. doi: 10.1073/pnas.1004904108
|
[37] |
Sigman D M, Casciotti K L, Andreani M, et al. 2001. A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Analytical Chemistry, 73(17): 4145–4153. doi: 10.1021/ac010088e
|
[38] |
Styring A K, Sealy J C, Evershed R P. 2010. Resolving the bulk δ15N values of ancient human and animal bone collagen via compound-specific nitrogen isotope analysis of constituent amino acids. Geochimica et Cosmochimica Acta, 74(1): 241–251. doi: 10.1016/j.gca.2009.09.022
|
[39] |
Sun Yuchen, Ishikawa N F, Ogawa N O, et al. 2020. A method for stable carbon isotope measurement of underivatized individual amino acids by multi-dimensional high-performance liquid chromatography and elemental analyzer/isotope ratio mass spectrometry. Rapid Communications in Mass Spectrometry, 34(20): e8885
|
[40] |
Swalethorp R, Aluwihare L, Thompson A R, et al. 2020. Errors associated with compound-specific δ15N analysis of amino acids in preserved fish samples purified by high-pressure liquid chromatography. Limnology and Oceanography: Methods, 18(6): 259–270. doi: 10.1002/lom3.10359
|
[41] |
Takano Y, Chikaraishi Y, Ohkouchi N. 2015. Isolation of underivatized amino acids by ion-pair high performance liquid chromatography for precise measurement of nitrogen isotopic composition of amino acids: development of comprehensive LC×GC/C/IRMS method. International Journal of Mass Spectrometry, 379: 16–25. doi: 10.1016/j.ijms.2014.11.012
|
[42] |
Tripp J A, McCullagh J S. 2012. Preparative HPLC separation of underivatized amino acids for isotopic analysis. In: Alterman M A, Hunziker P, eds. Amino Acid Analysis. Totowa, NJ, USA: Humana Press, 339–350
|
[43] |
Wang Fuqiang, Wu Ying, Chen Zuozhi, et al. 2019. Trophic interactions of mesopelagic fishes in the South China Sea illustrated by stable isotopes and fatty acids. Frontiers in Marine Science, 5: 522. doi: 10.3389/fmars.2018.00522
|
[44] |
Yamaguchi Y T, McCarthy M D. 2018. Sources and transformation of dissolved and particulate organic nitrogen in the North Pacific Subtropical Gyre indicated by compound-specific δ15N analysis of amino acids. Geochimica et Cosmochimica Acta, 220: 329–347. doi: 10.1016/j.gca.2017.07.036
|
[45] |
Zhang Lin, Altabet M A. 2008. Amino-group-specific natural abundance nitrogen isotope ratio analysis in amino acids. Rapid Communications in Mass Spectrometry, 22(4): 559–566. doi: 10.1002/rcm.3393
|
[46] |
Zhang Lin, Altabet M A, Wu Taixing, et al. 2007. Sensitive measurement of
|