Citation: | Ming Sun, Yunzhou Li, Yiping Ren, Yong Chen. Developing an intermediate-complexity projection model for China’s fisheries: A case study of small yellow croaker (Larimichthys polyactis) in the Haizhou Bay, China[J]. Acta Oceanologica Sinica, 2021, 40(8): 108-118. doi: 10.1007/s13131-021-1793-3 |
[1] |
Anderson C M, Krigbaum M J, Arostegui M C, et al. 2019. How commercial fishing effort is managed. Fish and Fisheries, 20(2): 268–285. doi: 10.1111/faf.12339
|
[2] |
Brodziak J, Rago P, Conser R. 1998. A general approach for making short-term stochastic projections from an age-structured fisheries assessment model. In: Fishery Stock Assessment Models. Fairbanks, AK, USA: University of Alaska, 933–1012
|
[3] |
Cao Ling, Chen Yong, Dong Shuanglin, et al. 2017. Opportunity for marine fisheries reform in China. Proceedings of the National Academy of Sciences of the United States of America, 114(3): 435–442. doi: 10.1073/pnas.1616583114
|
[4] |
Carruthers T R, Hordyk A R. 2019. Using management strategy evaluation to establish indicators of changing fisheries. Canadian Journal of Fisheries and Aquatic Sciences, 76(9): 1653–1668. doi: 10.1139/cjfas-2018-0223
|
[5] |
Chen Ning, Zhang Chongliang, Sun Ming, et al. 2018. The impact of natural mortality variations on the performance of management procedures for Spanish mackerel (Scomberomorus niphonius) in the Yellow Sea, China. Acta Oceanologica Sinica, 37(8): 21–30. doi: 10.1007/s13131-018-1234-0
|
[6] |
Coro G, Large S, Magliozzi C, et al. 2016. Analysing and forecasting fisheries time series: purse seine in Indian Ocean as a case study. ICES Journal of Marine Science, 73(10): 2552–2571. doi: 10.1093/icesjms/fsw131
|
[7] |
Costello C, Rassweiler A, Siegel D, et al. 2010. The value of spatial information in MPA network design. Proceedings of the National Academy of Sciences of the United States of America, 107(43): 18294–18299. doi: 10.1073/pnas.0908057107
|
[8] |
De Oliveira J A A, Kell L T, Punt A E, et al. 2008. Managing without best predictions: The management strategy evaluation framework. In: Payne A, Cotter J, Potter T, eds. Advances in Fisheries Science: 50 Years on from Beverton and Holt. Oxford, UK: Wiley-Blackwell, 104–134
|
[9] |
Dunn D C, Boustany A M, Halpin P N. 2011. Spatio-temporal management of fisheries to reduce by-catch and increase fishing selectivity. Fish and Fisheries, 12(1): 110–119. doi: 10.1111/j.1467-2979.2010.00388.x
|
[10] |
Goethel D R, Legault C M, Cadrin S X. 2015. Testing the performance of a spatially explicit tag-integrated stock assessment model of yellowtail flounder (Limanda ferruginea) through simulation analysis. Canadian Journal of Fisheries and Aquatic Sciences, 72(4): 582–601. doi: 10.1139/cjfas-2014-0244
|
[11] |
Goethel D R, Lucey S M, Berger A M, et al. 2019. Recent advances in management strategy evaluation: Introduction to the special issue “Under pressure: Addressing fisheries challenges with management strategy evaluation”. Canadian Journal of Fisheries and Aquatic Sciences, 76(10): 1689–1696. doi: 10.1139/cjfas-2019-0084
|
[12] |
Guan Lisha, Chen Yong, Boenish R, et al. 2020. Improving data-limited stock assessment with sporadic stock index information in stock reduction analysis. Canadian Journal of Fisheries and Aquatic Sciences, 77(5): 857–868. doi: 10.1139/cjfas-2018-0500
|
[13] |
Han Dongyan, Chen Yong, Zhang Chongliang, et al. 2017. Evaluating impacts of intensive shellfish aquaculture on a semi-closed marine ecosystem. Ecological Modelling, 359: 193–200. doi: 10.1016/j.ecolmodel.2017.05.024
|
[14] |
Hilborn R, Amoroso R O, Anderson C M, et al. 2020. Effective fisheries management instrumental in improving fish stock status. Proceedings of the National Academy of Sciences of the United States of America, 117(4): 2218–2224. doi: 10.1073/pnas.1909726116
|
[15] |
Holland D S. 2010. Management strategy evaluation and management procedures: tools for rebuilding and sustaining fisheries. OECD Food, Agriculture and Fisheries Working Papers, No. 25. Paris, France: OECD Publishing
|
[16] |
Hoos L A, Buckel J A, Boyd J B, et al. 2019. Fisheries management in the face of uncertainty: Designing time-area closures that are effective under multiple spatial patterns of fishing effort displacement in an estuarine gill net fishery. PLoS ONE, 14(1): e0211103. doi: 10.1371/journal.pone.0211103
|
[17] |
Kuparinen A, Keith D M, Hutchings J A. 2014. Increased environmentally driven recruitment variability decreases resilience to fishing and increases uncertainty of recovery. ICES Journal of Marine Science, 71(6): 1507–1514. doi: 10.1093/icesjms/fsu021
|
[18] |
Lee Q, Lee A, Liu Zunlei, et al. 2020. Life history changes and fisheries assessment performance: a case study for small yellow croaker. ICES Journal of Marine Science, 77(2): 645–654. doi: 10.1093/icesjms/fsz232
|
[19] |
Li Yunzhou, Sun Ming, Zhang Chongliang, et al. 2020. Evaluating fisheries conservation strategies in the socio-ecological system: A grid-based dynamic model to link spatial conservation prioritization tools with tactical fisheries management. PLoS ONE, 15(4): e0230946. doi: 10.1371/journal.pone.0230946
|
[20] |
Li Yunzhou, Zhang Chongliang, Xue Ying, et al. 2019. Developing a marine protected area network with multiple objectives in China. Aquatic Conservation: Marine and Freshwater Ecosystems, 29(6): 952–963. doi: 10.1002/aqc.3076
|
[21] |
Liang Cui, Xian Weiwei, Pauly D. 2018. Impacts of ocean warming on China’s fisheries catches: An application of ‘mean temperature of the catch’ concept. Frontiers in Marine Science, 5: 26. doi: 10.3389/fmars.2018.00026
|
[22] |
Liu Qun, Xu Binduo, Ye Zhenjiang, et al. 2012. Growth and mortality of small yellow croaker (Larimichthys polyactis) inhabiting Haizhou bay of China. Journal of Ocean University of China, 11(4): 557–561. doi: 10.1007/s11802-012-2099-z
|
[23] |
Liu Zunlei, Yuan Xingwei, Yang Linlin, et al. 2015. Effect of stock abundance and environmental factors on the recruitment success of small yellow croaker in the East China Sea. Chinese Journal of Applied Ecology (in Chinese), 26(2): 588–600
|
[24] |
Ma Shuyang, Liu Yang, Li Jianchao, et al. 2019. Climate-induced long-term variations in ecosystem structure and atmosphere-ocean-ecosystem processes in the Yellow Sea and East China Sea. Progress in Oceanography, 175: 183–197. doi: 10.1016/j.pocean.2019.04.008
|
[25] |
Matson S E, Taylor I G, Gertseva V V, et al. 2017. Novel catch projection model for a commercial groundfish catch shares fishery. Ecological Modelling, 349: 51–61. doi: 10.1016/j.ecolmodel.2017.01.023
|
[26] |
Memarzadeh M, Britten G L, Worm B, et al. 2019. Rebuilding global fisheries under uncertainty. Proceedings of the National Academy of Sciences of the United States of America, 116(32): 15985–15990. doi: 10.1073/pnas.1902657116
|
[27] |
Punt A E, A’mar T, Bond N A, et al. 2014. Fisheries management under climate and environmental uncertainty: control rules and performance simulation. ICES Journal of Marine Science, 71(8): 2208–2220. doi: 10.1093/icesjms/fst057
|
[28] |
Punt A E, Butterworth D S, de Moor C L, et al. 2016. Management strategy evaluation: best practices. Fish and Fisheries, 17(2): 303–334. doi: 10.1111/faf.12104
|
[29] |
Punt A E, Donovan G P. 2007. Developing management procedures that are robust to uncertainty: Lessons from the International Whaling Commission. ICES Journal of Marine Science, 64: 603–612. doi: 10.1093/icesjms/fsm035
|
[30] |
R Core Team. 2019. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing
|
[31] |
Rice J C, Richards L J. 1996. A framework for reducing implementation uncertainty in fisheries management. North American Journal of Fisheries Management, 16(3): 488–494. doi: 10.1577/1548-8675(1996)016<0488:AFFRIU>2.3.CO;2
|
[32] |
Sethi S A. 2010. Risk management for fisheries. Fish and Fisheries, 11(4): 341–365. doi: 10.1111/j.1467-2979.2010.00363.x
|
[33] |
Sethi G, Costello C, Fisher A, et al. 2005. Fishery management under multiple uncertainty. Journal of Environmental Economics and Management, 50(2): 300–318. doi: 10.1016/j.jeem.2004.11.005
|
[34] |
Sguotti C, Otto S A, Frelat R, et al. 2019. Catastrophic dynamics limit Atlantic cod recovery. Proceedings of the Royal Society B: Biological Sciences, 286(1898): 20182877. doi: 10.1098/rspb.2018.2877
|
[35] |
Shan Xiujuan, Li Xiansen, Yang Tao, et al. 2017. Biological responses of small yellow croaker (Larimichthys polyactis) to multiple stressors: a case study in the Yellow Sea, China. Acta Oceanologica Sinica, 36(10): 39–47. doi: 10.1007/s13131-017-1091-2
|
[36] |
Shen Gongming, Heino M. 2014. An overview of marine fisheries management in China. Marine Policy, 44: 265–272. doi: 10.1016/j.marpol.2013.09.012
|
[37] |
Stefansson G, Rosenberg A A. 2005. Combining control measures for more effective management of fisheries under uncertainty: Quotas, effort limitation and protected areas. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1453): 133–146. doi: 10.1098/rstb.2004.1579
|
[38] |
Stow C A, Jolliff J, McGillicuddy D J Jr, et al. 2009. Skill assessment for coupled biological/physical models of marine systems. Journal of Marine Systems, 76(1–2): 4–15. doi: 10.1016/j.jmarsys.2008.03.011
|
[39] |
Su Shu, Tang Yi, Chang Bowen, et al. 2020. Evolution of marine fisheries management in China from 1949 to 2019: How did China get here and where does China go next?. Fish and Fisheries, 21(2): 435–452. doi: 10.1111/faf.12439
|
[40] |
Sun Ming, Li Yunzhou, Ren Yiping, et al. 2019. Developing and evaluating a management strategy evaluation framework for the Gulf of Maine cod (Gadus morhua). Ecological Modelling, 404: 27–35. doi: 10.1016/j.ecolmodel.2019.04.007
|
[41] |
Sun Ming, Li Yunzhou, Ren Yiping, et al. 2020. Rebuilding depleted fisheries towards BMSY under uncertainty: harvest control rules outperform combined management measures. ICES Journal of Marine Science, 1–15
|
[42] |
Sun Ming, Zhang Chongliang, Chen Yong, et al. 2018a. Assessing the sensitivity of data-limited methods (DLMs) to the estimation of life-history parameters from length–frequency data. Canadian Journal of Fisheries and Aquatic Sciences, 75(10): 1563–1572. doi: 10.1139/cjfas-2017-0325
|
[43] |
Sun Ming, Zhang Chongliang, Li Yunzhou, et al. 2018b. Management strategy evaluation of fishery stocks in Haizhou Bay based on Data-Limited Methods. Journal of Fisheries of China (in Chinese), 42(10): 1661–1669
|
[44] |
Worm B. 2016. Averting a global fisheries disaster. Proceedings of the National Academy of Sciences of the United States of America, 113(18): 4895–4897. doi: 10.1073/pnas.1604008113
|
[45] |
Xing Lei, Zhang Chongliang, Chen Yong, et al. 2017. An individual-based model for simulating the ecosystem dynamics of Jiaozhou Bay, China. Ecological Modelling, 360: 120–131. doi: 10.1016/j.ecolmodel.2017.06.010
|
[46] |
Xu Binduo, Zhang Chongliang, Xue Ying, et al. 2015. Optimization of sampling effort for a fishery-independent survey with multiple goals. Environmental Monitoring and Assessment, 187: 252. doi: 10.1007/s10661-015-4483-9
|
[47] |
Zhang Chongliang, Chen Yong, Ren Yiping. 2016. An evaluation of implementing long-term MSY in ecosystem-based fisheries management: Incorporating trophic interaction, bycatch and uncertainty. Fisheries Research, 174: 179–189. doi: 10.1016/j.fishres.2015.10.007
|
[48] |
Zhang Chi, Ye Zhenjiang, Wan Rong, et al. 2014. Investigating the population structure of small yellow croaker (Larimichthys polyactis) using internal and external features of otoliths. Fisheries Research, 153: 41–47. doi: 10.1016/j.fishres.2013.12.012
|
[49] |
Zhang Kui, Zhang Jun, Xu Youwei, et al. 2018. Application of a catch-based method for stock assessment of three important fisheries in the East China Sea. Acta Oceanologica Sinica, 37(2): 102–109. doi: 10.1007/s13131-018-1173-9
|
[50] |
Zhong Xiaming, Zhang Hu, Tang Jianhua, et al. 2011. Temporal and spatial distribution of Larimichthys polyactis Bleeker resources in offshore areas of Jiangsu Province. Journal of Fisheries of China (in Chinese), 35(2): 238–246
|
AOS-40-8-SunMing-supplementary.pdf |