Citation: | Bao Wang, Shichao Liu, Bin Wang, Wenzhou Wu, Jiechen Wang, Dingtao Shen. Multi-step ahead short-term predictions of storm surge level using CNN and LSTM network[J]. Acta Oceanologica Sinica, 2021, 40(11): 104-118. doi: 10.1007/s13131-021-1763-9 |
[1] |
Araya I A, Valle C, Allende H. 2020. A Multi-Scale Model based on the Long Short-Term Memory for day ahead hourly wind speed forecasting. Pattern Recognition Letters, 136: 333–340. doi: 10.1016/j.patrec.2019.10.011
|
[2] |
Balas C E, Koç M L, Tür R. 2010. Artificial neural networks based on principal component analysis, fuzzy systems and fuzzy neural networks for preliminary design of rubble mound breakwaters. Applied Ocean Research, 32(4): 425–433. doi: 10.1016/j.apor.2010.09.005
|
[3] |
Chang H K, Lin L C. 2006. Multi-point tidal prediction using artificial neural network with tide-generating forces. Coastal Engineering, 53(10): 857–864. doi: 10.1016/j.coastaleng.2006.05.001
|
[4] |
Chen Yong, Zhang Shuai, Zhang Wenyu, et al. 2019. Multifactor spatio-temporal correlation model based on a combination of convolutional neural network and long short-term memory neural network for wind speed forecasting. Energy Conversion and Management, 185(4): 783–799
|
[5] |
Cox D T, Tissot P, Michaud P. 2002. Water level observations and short-term predictions including meteorological events for entrance of Galveston bay, Texas. Journal of Waterway, Port, Coastal, and Ocean Engineering, 128(1): 21–29. doi: 10.1061/(ASCE)0733-950X(2002)128:1(21)
|
[6] |
Dong Na, Chang Jianfang, Wu Aiguo, et al. 2020. A novel convolutional neural network framework based solar irradiance prediction method. International Journal of Electrical Power & Energy Systems, 114(3): 105411
|
[7] |
El-Diasty M, Al-Harbi S, Pagiatakis S. 2018. Hybrid harmonic analysis and wavelet network model for sea water level prediction. Applied Ocean Research, 70(2): 14–21
|
[8] |
Hochreiter S, Schmidhuber J. 1997. Long Short-term Memory. Neural Computation, 9(8): 1735–1780. doi: 10.1162/neco.1997.9.8.1735
|
[9] |
Imani M, Kao H C, Lan W H, et al. 2018. Daily sea level prediction at Chiayi coast, Taiwan using extreme learning machine and relevance vector machine. Global and Planetary Change, 161: 211–221. doi: 10.1016/j.gloplacha.2017.12.018
|
[10] |
Ishida K, Tsujimoto G, Ercan A, et al. 2020. Hourly-scale coastal sea level modeling in a changing climate using long short-term memory neural network. Science of the Total Environment, 720: 137613. doi: 10.1016/j.scitotenv.2020.137613
|
[11] |
Kao I F, Zhou Yanlai, Chang L C, et al. 2020. Exploring a Long Short-Term Memory based Encoder-Decoder framework for multi-step-ahead flood forecasting. Journal of Hydrology, 583: 124631. doi: 10.1016/j.jhydrol.2020.124631
|
[12] |
Karimi S, Kisi O, Shiri J, et al. 2013. Neuro-fuzzy and neural network techniques for forecasting sea level in Darwin Harbor, Australia. Computers & Geosciences, 52: 50–59
|
[13] |
Kim S, Matsumi Y, Pan Shunqi, et al. 2016. A real-time forecast model using artificial neural network for after-runner storm surges on the Tottori coast, Japan. Ocean Engineering, 122: 44–53. doi: 10.1016/j.oceaneng.2016.06.017
|
[14] |
Kim S W, Melby J A, Nadal-Caraballo N C, et al. 2015. A time-dependent surrogate model for storm surge prediction based on an artificial neural network using high-fidelity synthetic hurricane modeling. Natural Hazards, 76: 565–585. doi: 10.1007/s11069-014-1508-6
|
[15] |
Kim S, Pan Shunqi, Mase H. 2019. Artificial neural network-based storm surge forecast model: Practical application to Sakai Minato, Japan. Applied Ocean Research, 91: 101871. doi: 10.1016/j.apor.2019.101871
|
[16] |
Lee T L. 2006. Neural network prediction of a storm surge. Ocean Engineering, 33(3–4): 483–494. doi: 10.1016/j.oceaneng.2005.04.012
|
[17] |
Lee T L. 2008. Back-propagation neural network for the prediction of the short-term storm surge in Taichung harbor, Taiwan. Engineering Applications of Artificial Intelligence, 21(1): 63–72. doi: 10.1016/j.engappai.2007.03.002
|
[18] |
Lee T L. 2009. Predictions of typhoon storm surge in Taiwan using artificial neural networks. Advances in Engineering Software, 40(11): 1200–1206. doi: 10.1016/j.advengsoft.2007.06.005
|
[19] |
Li Youru, Zhu Zhenfeng, Kong Deqiang, et al. 2019. EA-LSTM: Evolutionary attention-based LSTM for time series prediction. Knowledge-Based Systems, 181: 104785. doi: 10.1016/j.knosys.2019.05.028
|
[20] |
Liang S X, Li M C, Sun Z C. 2008. Prediction models for tidal level including strong meteorologic effects using a neural network. Ocean Engineering, 35(7): 666–675. doi: 10.1016/j.oceaneng.2007.12.006
|
[21] |
Liu Hui, Mi Xiwei, Li Yanfei. 2018. Smart deep learning based wind speed prediction model using wavelet packet decomposition, convolutional neural network and convolutional long short term memory network. Energy Conversion and Management, 166(3): 120–131
|
[22] |
Mel R, Viero D P, Carniello L, et al. 2014. Simplified methods for real-time prediction of storm surge uncertainty: The city of Venice case study. Advances in Water Resources, 71: 177–185. doi: 10.1016/j.advwatres.2014.06.014
|
[23] |
Mok K M, Lai U H, Hoi K I. 2016. Development of an adaptive Kalman filter-based storm tide forecasting model. Journal of Hydrodynamics, 28(6): 1029–1036. doi: 10.1016/S1001-6058(16)60707-2
|
[24] |
Nitsure S P, Londhe S N, Khare K C. 2014. Prediction of sea water levels using wind information and soft computing techniques. Applied Ocean Research, 47: 344–351. doi: 10.1016/j.apor.2014.07.003
|
[25] |
Oh S L, Ng E Y K, Tan R S, et al. 2018. Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats. Computers in Biology and Medicine, 102: 278–287. doi: 10.1016/j.compbiomed.2018.06.002
|
[26] |
Pak U, Ma Jun, Ryu U, et al. 2020. Deep learning-based PM2.5 prediction considering the spatiotemporal correlations: A case study of Beijing, China. Science of the Total Environment, 699: 133561. doi: 10.1016/j.scitotenv.2019.07.367
|
[27] |
Petersen N C, Rodrigues F, Pereira F C. 2019. Multi-output bus travel time prediction with convolutional LSTM neural network. Expert Systems with Applications, 120: 426–435. doi: 10.1016/j.eswa.2018.11.028
|
[28] |
Qing Xiangyun, Niu Yugang. 2018. Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM. Energy, 148: 461–468. doi: 10.1016/j.energy.2018.01.177
|
[29] |
Rajasekaran S, Gayathri S, Lee T L. 2008. Support vector regression methodology for storm surge predictions. Ocean Engineering, 35(16): 1578–1587. doi: 10.1016/j.oceaneng.2008.08.004
|
[30] |
Sadaei H J, de Lima e Silva P C, Guimarães F G, et al. 2019. Short-term load forecasting by using a combined method of convolutional neural networks and fuzzy time series. Energy, 175: 365–377. doi: 10.1016/j.energy.2019.03.081
|
[31] |
Sagheer A, Kotb M. 2019. Time series forecasting of petroleum production using deep LSTM recurrent networks. Neurocomputing, 323: 203–213. doi: 10.1016/j.neucom.2018.09.082
|
[32] |
Shi Xingjian, Chen Zhourong, Wang Hao, et al. 2015. Convolutional LSTM Network: a machine learning approach for precipitation nowcasting. In: Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge, MA, United States: MIT Press, 802–810
|
[33] |
Song Xuanyi, Liu Yuetian, Xue Liang, et al. 2020. Time-series well performance prediction based on Long Short-Term Memory (LSTM) neural network model. Journal of Petroleum Science and Engineering, 186: 106682. doi: 10.1016/j.petrol.2019.106682
|
[34] |
Sztobryn M. 2003. Forecast of storm surge by means of artificial neural network. Journal of Sea Research, 49(4): 317–322. doi: 10.1016/S1385-1101(03)00024-8
|
[35] |
Wang Kang, Li Kenli, Zhou Liqian, et al. 2019. Multiple convolutional neural networks for multivariate time series prediction. Neurocomputing, 360: 107–119. doi: 10.1016/j.neucom.2019.05.023
|
[36] |
Wang Bao, Wang Bin, Wu Wenzhou, et al. 2020. Sea-water-level prediction via combined wavelet decomposition, neuro-fuzzy and neural networks using SLA and wind information. Acta Oceanologica Sinica, 39(5): 157–167. doi: 10.1007/s13131-020-1569-1
|
[37] |
Xiao Changjiang, Chen Nengcheng, Hu Chuli, et al. 2019. Short and mid-term sea surface temperature prediction using time-series satellite data and LSTM-AdaBoost combination approach. Remote Sensing of Environment, 233: 111358. doi: 10.1016/j.rse.2019.111358
|
[38] |
Yin Jianchuan, Wang Nini. 2016. An online sequential extreme learning machine for tidal prediction based on improved Gath-Geva fuzzy segmentation. Neurocomputing, 174: 85–98. doi: 10.1016/j.neucom.2015.02.094
|
[39] |
You S H, Seo J W. 2009. Storm surge prediction using an artificial neural network model and cluster analysis. Natural Hazards, 51(1): 97–114. doi: 10.1007/s11069-009-9396-x
|
[40] |
Zhang Zeguo, Yin Jianchuan, Wang Nini, et al. 2017. A precise tidal prediction mechanism based on the combination of harmonic analysis and adaptive network-based fuzzy inference system model. Acta Oceanologica Sinica, 36: 94–105
|
[41] |
Zhao Xinyu, Jiang Na, Liu Jinfu, et al. 2020. Short-term average wind speed and turbulent standard deviation forecasts based on one-dimensional convolutional neural network and the integrate method for probabilistic framework. Energy Conversion and Management, 203: 112239. doi: 10.1016/j.enconman.2019.112239
|