Volume 40 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
Jiachun An, Baojun Zhang, Songtao Ai, Zemin Wang, Yu Feng. Evaluation of vertical crustal movements and sea level changes around Greenland from GPS and tide gauge observations[J]. Acta Oceanologica Sinica, 2021, 40(1): 4-12. doi: 10.1007/s13131-021-1719-0
Citation: Jiachun An, Baojun Zhang, Songtao Ai, Zemin Wang, Yu Feng. Evaluation of vertical crustal movements and sea level changes around Greenland from GPS and tide gauge observations[J]. Acta Oceanologica Sinica, 2021, 40(1): 4-12. doi: 10.1007/s13131-021-1719-0

Evaluation of vertical crustal movements and sea level changes around Greenland from GPS and tide gauge observations

doi: 10.1007/s13131-021-1719-0
Funds:  The National Key R&D Program of China under contract No. 2016YFC1402701; the National Natural Science Foundation of China under contract Nos 41941010, 41531069 and 41476162.
More Information
  • Corresponding author: bjzhang@whu.edu.cn; E-mail: ast@whu.edu.cn
  • Received Date: 2020-08-27
  • Accepted Date: 2020-09-29
  • Available Online: 2021-04-21
  • Publish Date: 2021-01-25
  • To better monitor the vertical crustal movements and sea level changes around Greenland, multiple data sources were used in this paper, including global positioning system (GPS), tide gauge, satellite gravimetry, satellite altimetry, glacial isostatic adjustment (GIA). First, the observations of more than 50 GPS stations from the international GNSS service (IGS) and Greenland network (GNET) in 2007–2018 were processed and the common mode error (CME) was eliminated with using the principal component analysis (PCA). The results show that all GPS stations show an uplift trend and the stations in southern Greenland have a higher vertical speed. Second, by deducting the influence of GIA, the impact of current GrIS mass changes on GPS stations was analysed, and the GIA-corrected vertical velocity of the GPS is in good agreement with the vertical velocity obtained by gravity recovery and climate experiment (GRACE). Third, the absolute sea level change around Greenland at 4 gauge stations was obtained by combining relative sea level derived from tide gauge observations and crustal uplift rates derived from GPS observations, and was validated by sea level products of satellite altimetry. The results show that although the mass loss of GrIS can cause considerable global sea level rise, eustatic movements along the coasts of Greenland are quite complex under different mechanisms of sea level changes.
  • loading
  • [1]
    Adhikari S, Ivins E R, Frederikse T, et al. 2019. Sea-level fingerprints emergent from GRACE mission data. Earth System Science Data, 11(2): 629–646. doi: 10.5194/essd-11-629-2019
    [2]
    Aschwanden A, Fahnestock M A, Truffer M, et al. 2019. Contribution of the greenland ice sheet to sea level over the next millennium. Science Advances, 5(6): eaav9396. doi: 10.1126/sciadv.aav9396
    [3]
    Bevis M, Wahr J, Khan S A, et al. 2012. Bedrock displacements in Greenland manifest ice mass variations, climate cycles and climate change. Proceedings of the National Academy of Sciences of the United States of America, 109(30): 11944–11948. doi: 10.1073/pnas.1204664109
    [4]
    Brunnabend S E, Schröter J, Rietbroek R, et al. 2015. Regional sea level change in response to ice mass loss in Greenland, the West Antarctic and Alaska. Journal of Geophysical Research: Oceans, 120(11): 7316–7328. doi: 10.1002/2015JC011244
    [5]
    Chen Jianli, Wilson C R, Tapley B D. 2006. Satellite gravity measurements confirm accelerated melting of greenland ice sheet. Science, 313(5795): 1958–1960. doi: 10.1126/science.1129007
    [6]
    Cheng Yongcun, Andersen O, Knudsen P. 2015. An improved 20-year arctic ocean altimetric sea level data record. Marine Geodesy, 38(2): 146–162. doi: 10.1080/01490419.2014.954087
    [7]
    Cheng Minkang, Tapley B D, Ries J C. 2013. Deceleration in the Earth’s oblateness. Journal of Geophysical Research: Solid Earth, 118(2): 740–747. doi: 10.1002/jgrb.50058
    [8]
    Dong Danan, Fang Peng, Bock Y, et al. 2006. Spatiotemporal filtering using principal component analysis and Karhunen-Loeve expansion approaches for regional GPS network analysis. Journal of Geophysical Research: Solid Earth, 111(B3): B03405
    [9]
    Fleming K, Lambeck K. 2004. Constraints on the Greenland Ice Sheet since the Last Glacial Maximum from sea-level observations and glacial-rebound models. Quaternary Science Reviews, 23(9–10): 1053–1077
    [10]
    Forsberg R, Sørensen L, Simonsen S. 2017. Greenland and antarctica ice sheet mass changes and effects on global sea level. Surveys in Geophysics, 38(1): 89–104. doi: 10.1007/s10712-016-9398-7
    [11]
    Geruo A, Wahr J, Zhong Shijie. 2012. Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: An application to glacial isostatic adjustment in Antarctica and Canada. Geophysical Journal International, 192(2): 557–572
    [12]
    Herring T A, King R W, McClusky S C. 2015. Introduction to GAMIT/GLOBK (Release10.6). Cambridge, MA, USA: Massachusetts Institute of Technology, http://geoweb.mit.edu/gg/Intro_GG.pdf
    [13]
    Hsu C W, Velicogna I. 2017. Detection of sea level fingerprints derived from GRACE gravity data. Geophysical Research Letters, 44(17): 8953–8961. doi: 10.1002/2017GL074070
    [14]
    Khan S A, Kjeldsen K K, Kjaer K H, et al. 2014. Glacier dynamics at Helheim and Kangerdlugssuaq glaciers, southeast Greenland, since the Little Ice Age. The Cryosphere, 8(4): 1497–1507. doi: 10.5194/tc-8-1497-2014
    [15]
    Khan S A, Liu Lin, Wahr J, et al. 2010. GPS measurements of crustal uplift near Jakobshavn Isbræ due to glacial ice mass loss. Journal of Geophysical Research: Solid Earth, 115(B9): B09405
    [16]
    Khan S A, Sasgen I, Bevis M, et al. 2016. Geodetic measurements reveal similarities between post-Last Glacial Maximum and present-day mass loss from the Greenland ice sheet. Science Advances, 2(9): e1600931. doi: 10.1126/sciadv.1600931
    [17]
    Khan S A, Wahr J, Leuliette E, et al. 2008. Geodetic measurements of postglacial adjustments in Greenland. Journal of Geophysical Research: Solid Earth, 113(B2): B02402
    [18]
    Khan S A, Wahr J, Stearns L A, et al. 2007. Elastic uplift in southeast Greenland due to rapid ice mass loss. Geophysical Research Letters, 34(21): L21701. doi: 10.1029/2007GL031468
    [19]
    King M A, Altamimi Z, Boehm J, et al. 2010. Improved constraints on models of glacial isostatic adjustment: A review of the contribution of ground-based geodetic observations. Surveys in Geophysics, 31(5): 465–507. doi: 10.1007/s10712-010-9100-4
    [20]
    Lecavalier B S, Milne G A, Simpson M J R, et al. 2014. A model of Greenland ice sheet deglaciation constrained by observations of relative sea level and ice extent. Quaternary Science Reviews, 102: 54–84. doi: 10.1016/j.quascirev.2014.07.018
    [21]
    Li Juan, Zuo Juncheng, Chen Meixiang, et al. 2013. Assessing the global averaged sea-level budget from 2003 to 2010. Acta Oceanologica Sinica, 32(10): 16–23. doi: 10.1007/s13131-013-0361-x
    [22]
    Liu Lin, Khan S A, van Dam T, et al. 2017. Annual variations in GPS-measured vertical displacements near Upernavik Isstrøm (Greenland) and contributions from surface mass loading. Journal of Geophysical Research: Solid Earth, 122(1): 677–691. doi: 10.1002/2016JB013494
    [23]
    Mao Ailin, Harrison C G A, Dixon T H. 1999. Noise in GPS coordinate time series. Journal of Geophysical Research: Solid Earth, 104(B2): 2797–2816. doi: 10.1029/1998JB900033
    [24]
    Mitrovica J X, Tamisiea M E, Davis J L, et al. 2001. Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature, 409(6823): 1026–1029. doi: 10.1038/35059054
    [25]
    Nielsen E, Strykowski G, Forsberg R, et al. 2014. Estimation of PGR induced absolute gravity changes at greenland GNET stations. In: Rizos C, Willis P, eds. Earth on the Edge: Science for a Sustainable Planet. Berlin, Heidelberg: Springer
    [26]
    Paulson A, Zhong Shijie, Wahr J. 2007. Inference of mantle viscosity from GRACE and relative sea level data. Geophysical Journal International, 171(2): 497–508. doi: 10.1111/j.1365-246X.2007.03556.x
    [27]
    Peltier W R. 1994. Ice age paleotopography. Science, 265(5169): 195–201. doi: 10.1126/science.265.5169.195
    [28]
    Peltier W R. 2004. Global glacial isostasy and the surface of the ice-age earth: The ICE-5G (VM2) model and GRACE. Annual Review of Earth and Planetary Sciences, 32(1): 111–149. doi: 10.1146/annurev.earth.32.082503.144359
    [29]
    Peltier W R, Argus D F, Drummond R. 2015. Space geodesy constrains ice age terminal deglaciation: The global ICE-6G_C (VM5a) model. Journal of Geophysical Research: Solid Earth, 120(1): 450–487. doi: 10.1002/2014JB011176
    [30]
    Richter A, Rysgaard S, Dietrich R, et al. 2011. Coastal tides in West Greenland derived from tide gauge records. Ocean Dynamics, 61(1): 39–49. doi: 10.1007/s10236-010-0341-z
    [31]
    Rose S K, Andersen O B, Passaro M, et al. 2019. Arctic ocean sea level record from the complete radar altimetry era: 1991–2018. Remote Sensing, 11(14): 1672. doi: 10.3390/rs11141672
    [32]
    Simpson M J R, Milne G A, Huybrechts P, et al. 2009. Calibrating a glaciological model of the Greenland ice sheet from the Last Glacial Maximum to present-day using field observations of relative sea level and ice extent. Quaternary Science Reviews, 28(17–18): 1631–1657
    [33]
    Spada G, Galassi G, Olivieri M. 2014. A study of the longest tide gauge sea-level record in Greenland (Nuuk/Godthab, 1958–2002). Global and Planetary Change, 118: 42–51. doi: 10.1016/j.gloplacha.2014.04.001
    [34]
    Spada G, Ruggieri G, Sørensen L S, et al. 2012. Greenland uplift and regional sea level changes from ICESat observations and GIA modelling. Geophysical Journal International, 189(3): 1457–1474. doi: 10.1111/j.1365-246X.2012.05443.x
    [35]
    Swenson S, Chambers D, Wahr J. 2008. Estimating geocenter variations from a combination of GRACE and ocean model output. Journal of Geophysical Research: Solid Earth, 113(B8): B08410
    [36]
    Tapley B D, Bettadpur S, Watkins M, et al. 2004. The gravity recovery and climate experiment: Mission overview and early results. Geophysical Research Letters, 31(9): L09607
    [37]
    Tushingham A M, Peltier W R. 1991. Ice-3G: A new global model of Late Pleistocene deglaciation based upon geophysical predictions of post-glacial relative sea level change. Journal of Geophysical Research: Solid Earth, 96(B3): 4497–4523. doi: 10.1029/90JB01583
    [38]
    van den Broeke M R, Enderlin E M, Howat I M, et al. 2016. On the recent contribution of the Greenland ice sheet to sea level change. The Cryosphere, 10(5): 1933–1946. doi: 10.5194/tc-10-1933-2016
    [39]
    van Dam T, Wahr J, Lavallée D. 2007. A comparison of annual vertical crustal displacements from GPS and gravity recovery and climate experiment (GRACE) over Europe. Journal of Geophysical Research: Solid Earth, 112(B3): B03404
    [40]
    Wahr J, van Dam T, Larson K, et al. 2001. Geodetic measurements in Greenland and their implications. Journal of Geophysical Research: Solid Earth, 106(B8): 16567–16581. doi: 10.1029/2001JB000211
    [41]
    Wake L M, Lecavalier B S, Bevis M. 2016. Glacial isostatic adjustment (GIA) in Greenland: A review. Current Climate Change Reports, 2(3): 101–111. doi: 10.1007/s40641-016-0040-z
    [42]
    Wang Hansheng, Jia Lulu, Wu P, et al. 2010. Effects of global glacial isostatic adjustment on the secular changes of gravity and sea level in East Asia. Chinese Journal of Geophysics, 53(11): 2590–2602
    [43]
    Wang Hansheng, Wu P, van der Wal W, et al. 2009. Glacial isostatic adjustment model constrained by geodetic measurements and relative sea level. Chinese Journal of Geophysics, 52(10): 2450–2460
    [44]
    Williams S D P, Bock Y, Fang Peng, et al. 2004. Error analysis of continuous GPS position time series. Journal of Geophysical Research: Solid Earth, 109(B3): B03412
    [45]
    Yang Qian, Wdowinski S, Dixon T H. 2013. Annual variation of coastal uplift in Greenland as an indicator of variable and accelerating ice mass loss. Geochemistry, Geophysics, Geosystems, 14(5): 1569–1589. doi: 10.1002/ggge.20089
    [46]
    Zhang Jie, Bock Y, Johnson H, et al. 1997. Southern California permanent GPS geodetic array: Error analysis of daily position estimates and site velocities. Journal of Geophysical Research: Solid Earth, 102(B8): 18035–18055. doi: 10.1029/97JB01380
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (283) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return