Citation: | Mingyi Gu, Zhaomin Wang, Jianfen Wei, Xiaoyong Yu. An assessment of Arctic cloud water paths in atmospheric reanalyses[J]. Acta Oceanologica Sinica, 2021, 40(3): 46-57. doi: 10.1007/s13131-021-1706-5 |
[1] |
Bacmeister J T, Suarez M J, Robertson F R. 2006. Rain reevaporation, boundary layer-convection interactions, and pacific rainfall patterns in an AGCM. Journal of the Atmospheric Sciences, 63(12): 3383–3403. doi: 10.1175/JAS3791.1
|
[2] |
Bosilovich M G, Lucchesi R, Suarez M. 2016. MERRA-2: File specification. GMAO Office Note No. 9 (Version 1.1). Greenbelt, Maryland: GMAO
|
[3] |
Chernokulsky A, Mokhov I I. 2012. Climatology of total cloudiness in the arctic: an intercomparison of observations and reanalyses. Advances in Meteorology, 2012: 542093. doi: 10.1155/2012/542093
|
[4] |
Chou M D, Suarez M J, Liang X Z, et al. 2001. A thermal infrared radiation parameterization for atmospheric studies. Technical Report Series on Global Modeling and Data Assimilation, NASA/TM-2001-104606, Vol. 19. Greenbelt, MD: Goddard Space Flight Center
|
[5] |
Curry J A, Rossow W B, Randall D, et al. 1996. Overview of arctic cloud and radiation characteristics. Journal of Climate, 9(8): 1731–1764. doi: 10.1175/1520-0442(1996)009<1731:OOACAR>2.0.CO;2
|
[6] |
Dee D P, Uppala S M, Simmons A J, et al. 2011. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656): 553–597. doi: 10.1002/qj.828
|
[7] |
Dethloff K, Handorf D, Jaiser R, et al. 2019. Dynamical mechanisms of Arctic amplification. Annals of the New York Academy of Sciences, 1436(1): 184–194. doi: 10.1111/nyas.13698
|
[8] |
Ebert E E, Curry J A. 1992. A parameterization of ice cloud optical properties for climate models. Journal of Geophysical Research: Atmospheres, 97(D4): 3831–3836. doi: 10.1029/91JD02472
|
[9] |
ECMWF. 2010. IFS Documentation-CY36R1 Part IV: Physical Processes[J]. Reading, England: ECMWF, https://www.ecmwf.int/node/9233 [2010-1-26/2019-11-3], doi: 10.21957/2loi3bxcz
|
[10] |
English J M, Kay J E, Gettelman A, et al. 2014. Contributions of clouds, surface albedos, and mixed-phase ice nucleation schemes to Arctic radiation biases in CAM5. Journal of Climate, 27(13): 5174–5197. doi: 10.1175/JCLI-D-13-00608.1
|
[11] |
Fouquart Y. 1988. Radiative transfer in climate models. In: Schlesinger M E, ed. Physically-Based Modelling and Simulation of Climate and Climatic Change. Dordrecht: Springer, 223–283
|
[12] |
Fu Q, Yang P, Sun W B. 1998. An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models. Journal of Climate, 11(9): 2223–2237. doi: 10.1175/1520-0442(1998)011<2223:AAPOTI>2.0.CO;2
|
[13] |
Gelaro R, McCarty W, Suárez M J, et al. 2017. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). Journal of Climate, 30(14): 5419–5454. doi: 10.1175/JCLI-D-16-0758.1
|
[14] |
Geleyn J F, Hollingsworth A. 1979. An economical analytical method for the computation of the interaction between scattering and line absorption of radiation. Contrib to Atmospheric Physics, 52: 1–16
|
[15] |
Hersbach H, Bell B, Berrisford P, et al. 2020. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730): 1999–2049. doi: 10.1002/qj.3803
|
[16] |
Huang Y Y, Dong X Q, Xi B K, et al. 2017. Quantifying the uncertainties of reanalyzed Arctic cloud and radiation properties using satellite surface observations. Journal of Climate, 30(19): 8007–8029. doi: 10.1175/JCLI-D-16-0722.1
|
[17] |
Johansson E, Devasthale A, Tjernström M, et al. 2017. Response of the lower troposphere to moisture intrusions into the Arctic. Geophysical Research Letters, 44(5): 2527–2536. doi: 10.1002/2017GL072687
|
[18] |
Japan Meteorological Agency. 2019. Outline of the operational numerical weather prediction at the Japan Meteorological Agency. In: WMO Technical Progress Report on the Global Data-processing and Forecasting System and Numerical Weather Prediction. Japan: JMA, http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline2019-nwp/index.htm [2019-3-30/2019-11-3]
|
[19] |
Kay J E, L’Ecuyer T, Chepfer H, et al. 2016. Recent advances in arctic cloud and climate research. Current Climate Change Reports, 2(4): 159–169. doi: 10.1007/s40641-016-0051-9
|
[20] |
Kobayashi S, Ota Y, Harada Y, et al. 2015. The JRA-55 reanalysis: general specifications and basic characteristics. Journal of the Meteorological Society of Japan Ser II, 93(1): 5–48. doi: 10.2151/jmsj.2015-001
|
[21] |
Kitagawa H, Murai S. 2006. A revised radiation scheme for cloud treatments in the Japan Meteorological Agency Global Spectral Model. CAS/JSC WGNE Res. Activ Atmos Oceanic Modell, 36: 17–18
|
[22] |
Lenaerts J T M, Van Tricht K, Lhermitte S, et al. 2017. Polar clouds and radiation in satellite observations, reanalyses, and climate models. Geophysical Research Letters, 44(7): 3355–3364. doi: 10.1002/2016GL072242
|
[23] |
Li Z X, Le Treut H. 1992. Cloud-radiation feedbacks in a general circulation model and their dependence on cloud modelling assumptions. Climate Dynamics, 7(3): 133–139. doi: 10.1007/BF00211155
|
[24] |
Liu Y H, Key J R. 2016. Assessment of arctic cloud cover anomalies in atmospheric reanalysis products using satellite data. Journal of Climate, 26(17): 6065–6083. doi: 10.1175/JCLI-D-15-0861.1
|
[25] |
Liu Y H, Key J R, Vavrus S, et al. 2018. Time evolution of the cloud response to moisture intrusions into the Arctic during winter. Journal of Climate, 31(22): 9389–9405. doi: 10.1175/JCLI-D-17-0896.1
|
[26] |
Martin G M, Johnson D W, Spice A. 1994. The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds. Journal of the Atmospheric Sciences, 51(13): 1823–1842. doi: 10.1175/1520-0469(1994)051<1823:TMAPOE>2.0.CO;2
|
[27] |
Molod A, Takacs L, Suarez M, et al. 2015. Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2. Geoscientific Model Development, 8(5): 1339–1356. doi: 10.5194/gmd-8-1339-2015
|
[28] |
Moorthi S, Suarez M J. 1992. Relaxed arakawa-schubert. a parameterization of moist convection for general circulation models. Monthly Weather Review, 120(6): 978–1002. doi: 10.1175/1520-0493(1992)120<0978:RASAPO>2.0.CO;2
|
[29] |
Ou S C, Liou K N. 1995. Ice microphysics and climatic temperature feedback. Atmospheric Research, 35(2–4): 127–138
|
[30] |
Qiu S Y, Dong X Q, Xi B K, et al. 2015. Characterizing Arctic mixed-phase cloud structure and its relationship with humidity and temperature inversion using ARM NSA observations. Journal of Geophysical Research: Atmospheres, 120(15): 7737–7746. doi: 10.1002/2014JD023022
|
[31] |
Räisänen P. 1998. Effective longwave cloud fraction and maximum-random overlap of clouds: A problem and a solution. Monthly Weather Review, 126(12): 3336–3340. doi: 10.1175/1520-0493(1998)126<3336:ELCFAM>2.0.CO;2
|
[32] |
Rienecker M M, Suarez M J, Gelaro R, et al. 2011. MERRA: NASA’s modern-era retrospective analysis for research and applications. Journal of Climate, 24(14): 3624–3648. doi: 10.1175/JCLI-D-11-00015.1
|
[33] |
Rozenhaimer M S, Barton N, Redemann J, et al. 2018. Bias and sensitivity of boundary layer clouds and surface radiative fluxes in MERRA-2 and airborne observations over the Beaufort Sea during the ARISE campaign. Journal of Geophysical Research: Atmospheres, 123(12): 6565–6580. doi: 10.1029/2018JD028349
|
[34] |
Savijärvi H, Räisänen P. 1998. Long-wave optical properties of water clouds and rain. Tellus A, 50(1): 1–11. doi: 10.3402/tellusb.v50i1.16018
|
[35] |
Screen J A, Simmonds I. 2010. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464(7293): 1334–1337. doi: 10.1038/nature09051
|
[36] |
Serreze M C, Barry R G. 2011. Processes and impacts of Arctic amplification: a research synthesis. Global and Planetary Change, 77(1–2): 85–96. doi: 10.1016/j.gloplacha.2011.03.004
|
[37] |
Slingo A. 1989. A GCM parameterization for the shortwave radiative properties of water clouds. Journal of the Atmospheric Sciences, 46(10): 1419–1427. doi: 10.1175/1520-0469(1989)046<1419:AGPFTS>2.0.CO;2
|
[38] |
Sommeria G, Deardorff J W. 1977. Subgrid-scale condensation in models of nonprecipitating clouds. Journal of the Atmospheric Sciences, 34(2): 344–355. doi: 10.1175/1520-0469(1977)034<0344:SSCIMO>2.0.CO;2
|
[39] |
Tan I, Storelvmo T. 2019. Evidence of strong contributions from mixed-phase clouds to arctic climate change. Geophysical Research Letters, 46(5): 2894–2902. doi: 10.1029/2018GL081871
|
[40] |
Taylor P C, Boeke R C, Li Y, et al. 2019. Arctic cloud annual cycle biases in climate models. Atmospheric Chemistry and Physics, 19(13): 8759–8782. doi: 10.5194/acp-19-8759-2019
|
[41] |
Tiedtke M. 1993. Representation of clouds in large-scale models. Monthly Weather Review, 121(11): 3040–3061. doi: 10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2
|
[42] |
Walsh J E, Chapman W L, Portis D H. 2009. Arctic cloud fraction and radiative fluxes in atmospheric reanalyses. Journal of Climate, 22(9): 2316–2334. doi: 10.1175/2008JCLI2213.1
|
[43] |
Wang Z M, Zhang X D, Guan Z Y, et al. 2015. An atmospheric origin of the multi-decadal bipolar seesaw. Scientific Reports, 5: 8909. doi: 10.1038/srep08909
|
[44] |
Washington W M, Williamson D L. 1977. A description of the NCAR global circulation models. National Center for Atmospheric Research Ncar Koha Opencat, 17: 111–172, doi: 10.1016/b978-0-12-460817-7.50008-2
|