Volume 40 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
Ling Chen, Limei Tang, Jichao Yang, Xiaohu Li, Wei Wang, Fengyou Chu, Jie Zhang. Petrogenesis and tectonic implication of lavas from the Yap Trench, western Pacific[J]. Acta Oceanologica Sinica, 2021, 40(11): 147-161. doi: 10.1007/s13131-021-0185-y
Citation: Ling Chen, Limei Tang, Jichao Yang, Xiaohu Li, Wei Wang, Fengyou Chu, Jie Zhang. Petrogenesis and tectonic implication of lavas from the Yap Trench, western Pacific[J]. Acta Oceanologica Sinica, 2021, 40(11): 147-161. doi: 10.1007/s13131-021-0185-y

Petrogenesis and tectonic implication of lavas from the Yap Trench, western Pacific

doi: 10.1007/s13131-021-0185-y
Funds:  The National Key R&D Program of China under contract No. 2017YFC1405502; the Scientific Research Fund of the Second Institute of Oceanography, Ministry of Natural Resources under contract Nos QNYC1901 and JG2002; the National Natural Science Foundation of China under contract No. 41976072; the “13th Five-Year Plan” for Resources and Environment Projects of the China Ocean Mineral R&D Association (COMRA) under contract No. DY135-G2-1-01.
More Information
  • We present major and trace element data of lava recovered from the northern Yap Trench in the western Pacific and discuss their petrogenesis and tectonic implications within the framework of interactions between the Caroline Ridge and Yap Trench. Rocks were collected from both landward and seaward trench slopes and exhibited geochemical characteristics similar to backarc basin basalt (BABB) and mid-ocean ridge basalt (MORB), including high Fe content, tholeiitic affinity, high TiO2 value at a given FeOT/MgO ratio, Ti/V ratio between 20 and 50, low Ba/Nb ratio and Th/Nb ratio, and trace element patterns commonly displayed by BABB and MORB, which are distinct from arc lava. These rocks seem to have been generated during mantle upwelling and decompression melting at a spreading center. However, compared with typical forearc lava produced by seafloor spreading in the Mariana forearc region, such as the early Eocene forearc basalts and late Neogene forearc lava in the southernmost Mariana Trench, the Yap Trench lava is derived from a more fertile mantle and feature a more minor subduction component; thus, they cannot be the products of forearc mantle decompression melting. We suggest that the landward slope lava represents backarc basin crust that was overthrust onto the forearc lithosphere during the collision of the Caroline Ridge with the Yap Trench (20–25 Ma), which played a key role in the evolution of the Yap subduction system. Moreover, the seaward slope lava represents the subduction plate crust that accreted onto the deep trench during the collision. This collision event resulted in the cessation of Yap Arc magmatism; thus, the Yap Trench volcanic rocks (<25 Ma) previously suggested to be arc magma products may actually represent the nascent island arc lava with a lower subduction component than in the mature Mariana Arc lava.
  • loading
  • [1]
    Arculus R J. 2003. Use and abuse of the terms calcalkaline and calcalkalic. Journal of Petrology, 44(5): 929–935. doi: 10.1093/petrology/44.5.929
    [2]
    Beccaluva L, Macciotta G, Savelli C, et al. 1980. Geochemistry and K/Ar ages of volcanics dredged in the Philippine Sea (Mariana, Yap, and Palau trenches and Parece Vela Basin). In: Hayes D E, ed. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands. Washington, DC, USA: American Geophysical Union, 247–268
    [3]
    Beccaluva L, Serri G, Dostal J. 1986. Geochemistry of volcanic rocks from the Mariana, Yap and Palau trenches bearing on the tectono-magmatic evolution of the Mariana trench-arc-backarc system. Developments in Geotectonics, 21: 481–508
    [4]
    Bracey D R. 1975. Reconnaissance geophysical survey of the Caroline Basin. Geological Society of America Bulletin, 86(6): 775–784. doi: 10.1130/0016-7606(1975)86<775:RGSOTC>2.0.CO;2
    [5]
    Chen Ling, Tang Limei, Li Xiaohu, et al. 2019a. Geochemistry of peridotites from the Yap Trench, Western Pacific: implications for subduction zone mantle evolution. International Geology Review, 61(9): 1037–1051. doi: 10.1080/00206814.2018.1484305
    [6]
    Chen Ling, Tang Limei, Li Xiaohu, et al. 2019b. Ancient melt depletion and metasomatic history of the subduction zone mantle: osmium isotope evidence of peridotites from the Yap Trench, Western Pacific. Minerals, 9(12): 717. doi: 10.3390/min9120717
    [7]
    Crawford A J, Beccaluva L, Serri G, et al. 1986. Petrology, geochemistry and tectonic implications of volcanics dredged from the intersection of the Yap and Mariana trenches. Earth and Planetary Science Letters, 80(3–4): 265–280
    [8]
    Crawford A J, Falloon T J, Green D H. 1989. Classification, petrogenesis and tectonic setting of boninites. In: Crawford A J, ed. Boninites and related Rocks, Unwin and Hyman. London: UTAS, 1–49
    [9]
    Dilek Y, Furnes H, Shallo M. 2008. Geochemistry of the Jurassic Mirdita Ophiolite (Albania) and the MORB to SSZ evolution of a marginal basin oceanic crust. Lithos, 100(1–4): 174–209
    [10]
    Dong Dongdong, Zhang Zhengyi, Bai Yongliang, et al. 2018. Topographic and sedimentary features in the Yap subduction zone and their implications for the Caroline Ridge subduction. Tectonophysics, 722: 410–421. doi: 10.1016/j.tecto.2017.11.030
    [11]
    Elliott T, Plank T, Zindler A, et al. 1997. Element transport from slab to volcanic front at the Mariana arc. Journal of Geophysical Research: Solid Earth, 102(B7): 14991–15019. doi: 10.1029/97JB00788
    [12]
    Fornari D J, Weissel J K, Perfit M R, et al. 1979. Petrochemistry of the Sorol and Ayu Troughs: implications for crustal accretion at the northern and western boundaries of the Caroline Plate. Earth and Planetary Science Letters, 45(1): 1–15. doi: 10.1016/0012-821X(79)90102-X
    [13]
    Fujiwara T, Tamura C, Nishizawa A, et al. 2000. Morphology and tectonics of the Yap Trench. Marine Geophysical Researches, 21(1): 69–86
    [14]
    Gaina C, Müller D. 2007. Cenozoic tectonic and depth/age evolution of the Indonesian gateway and associated back-arc basins. Earth-Science Reviews, 83(3–4): 177–203
    [15]
    Gale A, Dalton C A, Langmuir C H, et al. 2013. The mean composition of ocean ridge basalts. Geochemistry, Geophysics, Geosystems, 14(3): 489–518. doi: 10.1029/2012GC004334
    [16]
    Gribble R F, Stern R J, Bloomer S H, et al. 1996. MORB mantle and subduction components interact to generate basalts in the southern Mariana Trough back-arc basin. Geochimica et Cosmochimica Acta, 60(12): 2153–2166. doi: 10.1016/0016-7037(96)00078-6
    [17]
    Gribble R F, Stern R J, Newman S, et al. 1998. Chemical and isotopic composition of lavas from the northern Mariana Trough: Implications for magmagenesis in back-arc basins. Journal of Petrology, 39(1): 125–154. doi: 10.1093/petroj/39.1.125
    [18]
    Hawkesworth C J, Turner S P, McDermott F, et al. 1997. U-Th isotopes in arc magmas: implications for element transfer from the subducted crust. Science, 276(5312): 551–555. doi: 10.1126/science.276.5312.551
    [19]
    Hawkins J, Batiza R. 1977. Metamorphic rocks of the Yap Arc-Trench system. Earth and Planetary Science Letters, 37(2): 216–229. doi: 10.1016/0012-821X(77)90166-2
    [20]
    Hawkins J W, Lonsdale P F, Macdougall J D, et al. 1990. Petrology of the axial ridge of the Mariana Trough backarc spreading center. Earth and Planetary Science Letters, 100(1–3): 226–250
    [21]
    Hegarty K A, Weissel J K. 1988. Complexities in the development of the Caroline Plate region, western equatorial Pacific. In: Nairn A E M, Stehli F G, Uyeda S, eds. The Ocean Basins and Margins. Boston: Springer, 277–301
    [22]
    Hickey-Vargas R. 1998. Origin of the Indian Ocean-type isotopic signature in basalts from Philippine Sea plate spreading centers: An assessment of local versus large-scale processes. Journal of Geophysical Research: Solid Earth, 103(B9): 20963–20979. doi: 10.1029/98JB02052
    [23]
    Hulme S M, Wheat C G, Fryer P, et al. 2010. Pore water chemistry of the Mariana serpentinite mud volcanoes: a window to the seismogenic zone. Geochemistry, Geophysics, Geosystems, 11(1): Q01X09
    [24]
    Ikeda Y, Nagao K, Ishii T, et al. 2016. Contributions of slab fluid and sediment melt components to magmatism in the Mariana Arc-Trough system: evidence from geochemical compositions and Sr, Nd, and noble gas isotope systematics. Island Arc, 25(4): 253–273. doi: 10.1111/iar.12150
    [25]
    Ishizuka O, Hickey-Vargas R, Arculus R J, et al. 2018. Age of Izu–Bonin–Mariana arc basement. Earth and Planetary Science Letters, 481: 80–90. doi: 10.1016/j.jpgl.2017.10.023
    [26]
    Ishizuka O, Kimura J I, Li Y B, et al. 2006. Early stages in the evolution of Izu–Bonin arc volcanism: new age, chemical, and isotopic constraints. Earth and Planetary Science Letters, 250(1–2): 385–401
    [27]
    Ishizuka O, Taylor R N, Yuasa M, et al. 2011. Making and breaking an island arc: a new perspective from the Oligocene Kyushu–Palau arc, Philippine Sea. Geochemistry, Geophysics, Geosystems, 12(5): Q05005
    [28]
    Keating B H, Mattey D P, Helsley C E, et al. 1984. Evidence for a hot spot origin of the Caroline Islands. Journal of Geophysical Research: Solid Earth, 89(B12): 9937–9948. doi: 10.1029/JB089iB12p09937
    [29]
    Kobayashi K. 2000. Horizontally-moving subducted slab may generate enigmatic features of the Palau and Yap Trench-Arcs. Proceedings of the Japan Academy, Series B, 76(9): 133–138. doi: 10.2183/pjab.76.133
    [30]
    Kobayashi K. 2004. Origin of the Palau and Yap Trench-Arc systems. Geophysical Journal International, 157(3): 1303–1315. doi: 10.1111/j.1365-246X.2003.02244.x
    [31]
    Le Bas M L, Le Maitre R W, Streckeisen A, et al. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27(3): 745–750. doi: 10.1093/petrology/27.3.745
    [32]
    Lee S M. 2004. Deformation from the convergence of oceanic lithosphere into Yap Trench and its implications for early-stage subduction. Journal of Geodynamics, 37(1): 83–102. doi: 10.1016/j.jog.2003.10.003
    [33]
    Li Hongyan, Taylor R N, Prytulak J, et al. 2019. Radiogenic isotopes document the start of subduction in the Western Pacific. Earth and Planetary Science Letters, 518: 197–210. doi: 10.1016/j.jpgl.2019.04.041
    [34]
    Liu Feng, Cui Weicheng, Li Xiangyang. 2010. China’s first deep manned submersible, JIAOLONG. Science China Earth Sciences, 53(10): 1407–1410. doi: 10.1007/s11430-010-4100-2
    [35]
    Martinez F, Stern R J, Kelley K A, et al. 2018. Diffuse extension of the southern Mariana margin. Journal of Geophysical Research: Solid Earth, 123(1): 892–916. doi: 10.1002/2017JB014684
    [36]
    McCabe R, Uyeda S. 1983. Hypothetical model for the bending of the Mariana Arc. In: Hayes D E, ed. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands. Washington, DC, USA: American Geophysical Union, 281–293
    [37]
    Meijer A, Reagan M, Ellis H, et al. 1983. Chronology of volcanic events in the eastern Philippine Sea. In: Hayes D E, ed. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands. Washington: American Geophysical Union, 349–359
    [38]
    Miyashiro A. 1974. Volcanic rock series in island arcs and active continental margins. American Journal of Science, 274(4): 321–355. doi: 10.2475/ajs.274.4.321
    [39]
    Ohara Y, Fujioka K, Ishizuka O, et al. 2002. Peridotites and volcanics from the Yap Arc system: implications for tectonics of the southern Philippine Sea Plate. Chemical Geology, 189(1–2): 35–53
    [40]
    Okino K, Kasuga S, Ohara Y. 1998. A new scenario of the Parece Vela Basin genesis. Marine Geophysical Researches, 20(1): 21–40. doi: 10.1023/A:1004377422118
    [41]
    Parkinson I J, Hawkesworth C J, Cohen A S. 1998. Ancient mantle in a modern arc: osmium isotopes in Izu-Bonin-Mariana forearc peridotites. Science, 281(5385): 2011–2013. doi: 10.1126/science.281.5385.2011
    [42]
    Pearce J A, Stern R J, Bloomer S H, et al. 2005. Geochemical mapping of the Mariana arc-basin system: Implications for the nature and distribution of subduction components. Geochemistry, Geophysics, Geosystems, 6(7): Q07006
    [43]
    Pearce J A, Van Der Laan S R, Arculus R J, et al. 1992. Boninite and harzburgite from Leg 125 (Bonin-Mariana forearc): a case study of magma genesis during the initial stages of subduction. In: Proceedings of the ocean drilling program scientific results. College Station, TX, USA: A&M University, 623–659
    [44]
    Reagan M K, Heaton D E, Schmitz M D, et al. 2019. Forearc ages reveal extensive short-lived and rapid seafloor spreading following subduction initiation. Earth and Planetary Science Letters, 506: 520–529. doi: 10.1016/j.jpgl.2018.11.020
    [45]
    Reagan M K, Ishizuka O, Stern R J, et al. 2010. Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system. Geochemistry, Geophysics, Geosystems, 11(3): Q03X12
    [46]
    Reagan M K, McClelland W C, Girard G, et al. 2013. The geology of the southern Mariana fore-arc crust: Implications for the scale of Eocene volcanism in the western Pacific. Earth and Planetary Science Letters, 380: 41–51. doi: 10.1016/j.jpgl.2013.08.013
    [47]
    Ribeiro J M, Ishizuka O, Lee C T A, et al. 2020. Evolution and maturation of the nascent Mariana arc. Earth and Planetary Science Letters, 530: 115912. doi: 10.1016/j.jpgl.2019.115912
    [48]
    Ribeiro J M, Stern R J, Kelley K A, et al. 2013a. Nature and distribution of slab-derived fluids and mantle sources beneath the Southeast Mariana forearc rift. Geochemistry, Geophysics, Geosystems, 14(10): 4585–4607. doi: 10.1002/ggge.20244
    [49]
    Ribeiro J M, Stern R J, Martinez F, et al. 2013b. Geodynamic evolution of a forearc rift in the southernmost Mariana Arc. Island Arc, 22(4): 453–476. doi: 10.1111/iar.12039
    [50]
    Sato T, Kasahara J, Katao H, et al. 1997. Seismic observations at the Yap Islands and the northern Yap Trench. Tectonophysics, 271(3–4): 285–294
    [51]
    Sdrolias M, Roest W R, Müller R D. 2004. An expression of Philippine Sea plate rotation: the Parece vela and shikoku basins. Tectonophysics, 394(1–2): 69–86
    [52]
    Seno T, Stein S, Gripp A E. 1993. A model for the motion of the Philippine Sea plate consistent with NUVEL-1 and geological data. Journal of Geophysical Research: Solid Earth, 98(B10): 17941–17948. doi: 10.1029/93JB00782
    [53]
    Shervais J W. 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters, 59(1): 101–118. doi: 10.1016/0012-821X(82)90120-0
    [54]
    Shervais J W, Reagan M, Haugen E, et al. 2019. Magmatic response to subduction initiation: Part 1. Fore-arc basalts of the Izu-Bonin arc from IODP Expedition 352. Geochemistry, Geophysics, Geosystems, 20(1): 314–338. doi: 10.1029/2018GC007731
    [55]
    Shiraki K. 1971. Metamorphic basement rocks of Yap Islands, western Pacific: possible oceanic crust beneath an island arc. Earth and Planetary Science Letters, 13(1): 167–174. doi: 10.1016/0012-821X(71)90120-8
    [56]
    Sinton J M, Fryer P. 1987. Mariana Trough lavas from 18°N: implications for the origin of back arc basin basalts. Journal of Geophysical Research: Solid Earth, 92(B12): 12782–12802. doi: 10.1029/JB092iB12p12782
    [57]
    Stern R J, Bloomer S H. 1992. Subduction zone infancy: examples from the Eocene Izu-Bonin-Mariana and Jurassic California arcs. Geological Society of America Bulletin, 104(12): 1621–1636. doi: 10.1130/0016-7606(1992)104<1621:SZIEFT>2.3.CO;2
    [58]
    Stern R J, Gerya T. 2018. Subduction initiation in nature and models: a review. Tectonophysics, 746: 173–198. doi: 10.1016/j.tecto.2017.10.014
    [59]
    Stern R J, Kohut E, Bloomer S H, et al. 2006. Subduction factory processes beneath the Guguan cross-chain, Mariana Arc: no role for sediments, are serpentinites important?. Contributions to Mineralogy and Petrology, 151(2): 202–221. doi: 10.1007/s00410-005-0055-2
    [60]
    Stern R J, Lin Pingnan, Morris J D, et al. 1990. Enriched back-arc basin basalts from the northern Mariana Trough: implications for the magmatic evolution of back-arc basins. Earth and Planetary Science Letters, 100(1–3): 210–225
    [61]
    Stern R J, Ren Minghua, Kelley K A, et al. 2014. Basaltic volcaniclastics from the Challenger Deep forearc segment, Mariana convergent margin: Implications for tectonics and magmatism of the southernmost Izu–Bonin–Mariana arc. Island Arc, 23(4): 368–382. doi: 10.1111/iar.12088
    [62]
    Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society Special Publication, 42(1): 313–345. doi: 10.1144/GSL.SP.1989.042.01.19
    [63]
    Tamura Y, Ishizuka O, Stern R J, et al. 2014. Mission immiscible: distinct subduction components generate two primary magmas at pagan volcano, Mariana arc. Journal of Petrology, 55(1): 63–101. doi: 10.1093/petrology/egt061
    [64]
    Turner S J, Langmuir C H. 2015. The global chemical systematics of arc front stratovolcanoes: Evaluating the role of crustal processes. Earth and Planetary Science Letters, 422: 182–193. doi: 10.1016/j.jpgl.2015.03.056
    [65]
    Van Keken P E, Kiefer B, Peacock S M. 2002. High-resolution models of subduction zones: Implications for mineral dehydration reactions and the transport of water into the deep mantle. Geochemistry, Geophysics, Geosystems, 3(10): 1056
    [66]
    Wada I, Rychert C A, Wang Kelin. 2011. Sharp thermal transition in the forearc mantle wedge as a consequence of nonlinear mantle wedge flow. Geophysical Research Letters, 38(13): L13308
    [67]
    Whattam S A, Stern R J. 2011. The ‘subduction initiation rule’: a key for linking ophiolites, intra-oceanic forearcs, and subduction initiation. Contributions to Mineralogy and Petrology, 162(5): 1031–1045. doi: 10.1007/s00410-011-0638-z
    [68]
    Yamazaki T, Kikawa E, Murakami F, et al. 1994. Spreading mode of the West Caroline Basin deduced from magnetic vector anomalies. Journal of Geomagnetism and Geoelectricity, 46(6): 443–453. doi: 10.5636/jgg.46.443
    [69]
    Yang Yaomin, Wu Shiguo, Gao Jinwei, et al. 2018. Geology of the Yap Trench: new observations from a transect near 10°N from manned submersible Jiaolong. International Geology Review, 60(16): 1941–1953. doi: 10.1080/00206814.2017.1394226
    [70]
    Zhang Zhengyi, Dong Dongdong, Sun Weidong, et al. 2019. Subduction Erosion, crustal structure, and an evolutionary model of the northern yap subduction zone: new observations from the latest geophysical survey. Geochemistry, Geophysics, Geosystems, 20(1): 166–182. doi: 10.1029/2018GC007751
    [71]
    Zhang Ji, Zhang Guoliang. 2020. Geochemical and chronological evidence for collision of proto-Yap Arc/Caroline Plateau and rejuvenated plate subduction at Yap Trench. Lithos, 370−371: 105616. doi: 10.1016/j.lithos.2020.105616
    [72]
    Zhang Guoliang, Zhang Ji, Wang Shuai, et al. 2020. Geochemical and chronological constraints on the mantle plume origin of the Caroline Plateau. Chemical Geology, 540: 119566. doi: 10.1016/j.chemgeo.2020.119566
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (1316) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return