Citation: | Shili Liao, Chuanwei Zhu, Jianping Zhou, Weiyong Liu, Junyu Yu, Jin Liang, Weifang Yang, Wei Li, Jia Liu, Chunhui Tao. Distal axis sulfide mineralization on the ultraslow-spreading Southwest Indian Ridge: an LA-ICP-MS study of pyrite from the East Longjing-2 hydrothermal field[J]. Acta Oceanologica Sinica, 2021, 40(5): 105-113. doi: 10.1007/s13131-020-1681-2 |
[1] |
Allen D E, Seyfried W E Jr. 2004. Serpentinization and heat generation: constraints from Lost City and Rainbow hydrothermal systems. Geochimica et Cosmochimica Acta, 68(6): 1347–1354. doi: 10.1016/j.gca.2003.09.003
|
[2] |
Andersen C, Rüpke L, Hasenclever J, et al. 2015. Fault geometry and permeability contrast control vent temperatures at the Logatchev 1 hydrothermal field, Mid-Atlantic Ridge. Geology, 43(1): 51–54. doi: 10.1130/G36113.1
|
[3] |
Beaulieu S E, Baker E T, German C R. 2015. Where are the undiscovered hydrothermal vents on oceanic spreading ridges?. Deep-Sea Research Part Ⅱ: Topical Studies in Oceanography, 121: 202–212. doi: 10.1016/j.dsr2.2015.05.001
|
[4] |
Bemis K, Lowell R P, Farough A. 2012. Diffuse flow on and around hydrothermal vents at mid-ocean ridges. Oceanography, 25(1): 182–191. doi: 10.5670/oceanog.2012.16
|
[5] |
Butler I B, Nesbitt R W. 1999. Trace element distributions in the chalcopyrite wall of a black smoker chimney: insights from laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS). Earth and Planetary Science Letters, 167(3–4): 335–345. doi: 10.1016/S0012-821X(99)00038-2
|
[6] |
Chen Jie, Tao Chunhui, Liang Jin, et al. 2018. Newly discovered hydrothermal fields along the ultraslow-spreading Southwest Indian Ridge around 63°E. Acta Oceanologica Sinica, 37(11): 61–67. doi: 10.1007/s13131-018-1333-y
|
[7] |
Corliss J B, Dymond J, Gordon L I, et al. 1979. Submarine thermal springs on the Galapagos Rift. Science, 203(4385): 1073–1083. doi: 10.1126/science.203.4385.1073
|
[8] |
Danyushevsky L, Robinson P, Gilbert S, et al. 2011. Routine quantitative multi-element analysis of sulphide minerals by laser ablation ICP-MS: Standard development and consideration of matrix effects. Geochemistry: Exploration, Environment, Analysis, 11(1): 51–60. doi: 10.1144/1467-7873/09-244
|
[9] |
Dias Á S, Barriga F J A S. 2006. Mineralogy and geochemistry of hydrothermal sediments from the serpentinite-hosted Saldanha hydrothermal field (36°34′N; 33°26′W) at MAR. Marine Geology, 225(1–4): 157–175. doi: 10.1016/j.margeo.2005.07.013
|
[10] |
Dick H J B, Lin Jian, Schouten H. 2003. An ultraslow-spreading class of ocean ridge. Nature, 426(6965): 405–412. doi: 10.1038/nature02128
|
[11] |
Fontaine F J, Rabinowicz M, Cannat M. 2017. Can high-temperature, high-heat flux hydrothermal vent fields be explained by thermal convection in the lower crust along fast-spreading Mid-Ocean Ridges?. Geochemistry, Geophysics, Geosystems, 18(5): 1907–1925. doi: 10.1002/2016GC006737
|
[12] |
Fouquet Y, Cambon P, Etoubleau J, et al. 2010. Geodiversity of hydrothermal processes along the Mid-Atlantic Ridge–Ultramafic-hosted mineralization: A new type of oceanic Cu-Zn-Co-Au volcanogenic massive sulfide deposit. In: Rona P A, Devey C W, Dyment J, et al., eds. Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Washington DC: American Geophysical Union, 188, 321–367
|
[13] |
Georgen J E, Lin Jian, Dick H J B. 2001. Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspots with the Southwest Indian Ridge: Effects of transform offsets. Earth and Planetary Science Letters, 187(3–4): 283–300. doi: 10.1016/S0012-821X(01)00293-X
|
[14] |
German C R, Petersen S, Hannington M D. 2016. ydrothermal exploration of mid-ocean ridges: Where might the largest sulfide deposits be forming?. Chemical Geology, 420: 114–126. doi: 10.1016/j.chemgeo.2015.11.006
|
[15] |
Hannington M D, De Ronde C D, Petersen S. 2005. Sea-floor tectonics and submarine hydrothermal systems. In: Hedenquist J W, Thompson J F H, Goldfarb R J, et al., eds. One Hundredth Anniversary Volume. McLean VA: Society of Economic Geologists, 100: 111–141
|
[16] |
Hannington M D, Tivey M K, Larocque A C, et al. 1995. The occurrence of gold in sulfide deposits of the TAG hydrothermal field, Mid-Atlantic Ridge. The Canadian Mineralogist, 33(6): 1285–1310
|
[17] |
Haymon R M. 1983. Growth history of hydrothermal black smoker chimneys. Nature, 301(5902): 695–698. doi: 10.1038/301695a0
|
[18] |
Keith M, Häckel F, Haase K M, et al. 2016a. Trace element systematics of pyrite from submarine hydrothermal vents. Ore Geology Reviews, 72: 728–745. doi: 10.1016/j.oregeorev.2015.07.012
|
[19] |
Keith M, Haase K M, Klemd R, et al. 2016b. Systematic variations of trace element and sulfur isotope compositions in pyrite with stratigraphic depth in the Skouriotissa volcanic-hosted massive sulfide deposit, Troodos ophiolite, Cyprus. Chemical Geology, 423: 7–18. doi: 10.1016/j.chemgeo.2015.12.012
|
[20] |
Kelley D S, Karson J A, Blackman D K, et al. 2001. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N. Nature, 412(6843): 145–149. doi: 10.1038/35084000
|
[21] |
Li Jiabiao, Jian Hanchao, Chen J Y, et al. 2015. Seismic observation of an extremely magmatic accretion at the ultraslow spreading Southwest Indian Ridge. Geophysical Research Letters, 42(8): 2656–2663. doi: 10.1002/2014GL062521
|
[22] |
Liao Shili, Tao Chunhui, Li Huaming, et al. 2018. Bulk geochemistry, sulfur isotope characteristics of the Yuhuang-1 hydrothermal field on the ultraslow-spreading Southwest Indian Ridge. Ore Geology Reviews, 96: 13–27. doi: 10.1016/j.oregeorev.2018.04.007
|
[23] |
Lowell R P, Gosnell S, Yang Yang. 2007. Numerical simulations of single-pass hydrothermal convection at mid-ocean ridges: Effects of the extrusive layer and temperature-dependent permeability. Geochemistry, Geophysics, Geosystems, 8(10): Q10011. doi: 10.1029/2007GC001653
|
[24] |
Lowell R P, Rona P A. 2002. Seafloor hydrothermal systems driven by the serpentinization of peridotite. Geophysical Research Letters, 29(11): 26–1
|
[25] |
Marques A F A, Barriga F J A S, Scott S D. 2007. Sulfide mineralization in an ultramafic-rock hosted seafloor hydrothermal system: From serpentinization to the formation of Cu–Zn–(Co)-rich massive sulfides. Marine Geology, 245(1–4): 20–39. doi: 10.1016/j.margeo.2007.05.007
|
[26] |
Marques A F A, Scott S D, Guillong M. 2011. Magmatic degassing of ore-metals at the Menez Gwen: Input from the Azores plume into an active Mid-Atlantic Ridge seafloor hydrothermal system. Earth and Planetary Science Letters, 310(1–2): 145–160. doi: 10.1016/j.jpgl.2011.07.021
|
[27] |
Martin A J, Keith M, McDonald I, et al. 2019. Trace element systematics and ore-forming processes in mafic VMS deposits: Evidence from the Troodos ophiolite, Cyprus. Ore Geology Reviews, 106: 205–225. doi: 10.1016/j.oregeorev.2019.01.024
|
[28] |
Maslennikov V V, Maslennikova S P, Large R R, et al. 2009. Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy volcanic-hosted massive sulfide deposit (Southern Urals, Russia) using laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS). Economic Geology, 104(8): 1111–1141. doi: 10.2113/gsecongeo.104.8.1111
|
[29] |
Melekestseva I Y, Zaykov V V, Nimis P, et al. 2013. Cu–(Ni–Co–Au)-bearing massive sulfide deposits associated with mafic–ultramafic rocks of the Main Urals Fault, South Urals: Geological structures, ore textural and mineralogical features, comparison with modern analogs. Ore Geology Reviews, 52(4): 18–36
|
[30] |
Meng Xingwei, Li Xiaohu, Chu Fengyou, et al. 2020. Trace element and sulfur isotope compositions for pyrite across the mineralization zones of a sulfide chimney from the East Pacific Rise (1–2°S). Ore Geology Reviews, 116: 103209. doi: 10.1016/j.oregeorev.2019.103209
|
[31] |
Metz S, Trefry J H. 2000. Chemical and mineralogical influences on concentrations of trace metals in hydrothermal fluids. Geochimica et Cosmochimica Acta, 64(13): 2267–2279. doi: 10.1016/S0016-7037(00)00354-9
|
[32] |
Mills R A, Thomson J, Elderfield H, et al. 1994. Uranium enrichment in metalliferous sediments from the Mid-Atlantic Ridge. Earth and Planetary Science Letters, 124(1–4): 35–47. doi: 10.1016/0012-821X(94)00083-2
|
[33] |
Murton B J, Lehrmann B, Dutrieux A M, et al. 2019. Geological fate of seafloor massive sulphides at the tag hydrothermal field (mid-Atlantic ridge). Ore Geology Reviews, 107: 903–925. doi: 10.1016/j.oregeorev.2019.03.005
|
[34] |
Reich M, Deditius A, Chryssoulis S, et al. 2013. Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: A SIMS/EMPA trace element study. Geochimica et Cosmochimica Acta, 104: 42–62. doi: 10.1016/j.gca.2012.11.006
|
[35] |
Reich M, Kesler S E, Utsunomiya S, et al. 2005. Solubility of gold in Arsenian pyrite. Geochimica et Cosmochimica Acta, 69(11): 2781–2796. doi: 10.1016/j.gca.2005.01.011
|
[36] |
Sauter D, Cannat M, Meyzen C, et al. 2009. Propagation of a melting anomaly along the ultraslow Southwest Indian Ridge between 46°E and 52°20’E: Interaction with the Crozet hotspot?. Geophysical Journal International, 179(2): 687–699. doi: 10.1111/j.1365-246X.2009.04308.x
|
[37] |
Tao Chunhui, Li Huaiming, Huang Wei, et al. 2011. Mineralogical and geochemical features of sulfide chimneys from the 49°39’ E hydrothermal field on the Southwest Indian Ridge and their geological inferences. Chinese Science Bulletin, 56(26): 2828–2838. doi: 10.1007/s11434-011-4619-4
|
[38] |
Tao Chunhui, Li Huaming, Jin Xiaobing, et al. 2014. Seafloor hydrothermal activity and polymetallic sulfide exploration on the Southwest Indian Ridge. Chinese Science Bulletin, 59(19): 2266–2276. doi: 10.1007/s11434-014-0182-0
|
[39] |
Tao Chunhui, Lin Jian, Guo Shiqin, et al. 2012. First active hydrothermal vents on an ultraslow-spreading center: Southwest Indian Ridge. Geology, 40(1): 47–50. doi: 10.1130/G32389.1
|
[40] |
Tao Chunhui, Seyfried W E Jr, Lowell R P, et al. 2020. Deep high-temperature hydrothermal circulation in a detachment faulting system on the ultra-slow spreading Ridge. Nature Communications, 11: 1300. doi: 10.1038/s41467-020-15062-w
|
[41] |
Wang Yejian, Han Xiqiu, Petersen S, et al. 2017. Mineralogy and trace element geochemistry of sulfide minerals from the Wocan Hydrothermal Field on the slow-spreading Carlsberg Ridge, Indian Ocean. Ore Geology Reviews, 84: 1–19. doi: 10.1016/j.oregeorev.2016.12.020
|
[42] |
Wang Yejian, Han Xiqiu, Petersen S, et al. 2018. Trace metal distribution in sulfide minerals from ultramafic-hosted hydrothermal systems: examples from the Kairei vent field, central Indian ridge. Minerals, 8(11): 526. doi: 10.3390/min8110526
|
[43] |
Whitney D L, Evans B W. 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185–187. doi: 10.2138/am.2010.3371
|
[44] |
Wohlgemuth-Ueberwasser C C, Viljoen F, Petersen S, et al. 2015. Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides: An in-situ LA-ICP-MS study. Geochimica et Cosmochimica Acta, 159: 16–41. doi: 10.1016/j.gca.2015.03.020
|
[45] |
Yang Weifang, Tao Chunhui, Li Huaming, et al. 2016. 230Th/238U dating of hydrothermal sulfides from Duanqiao hydrothermal field, Southwest Indian Ridge. Marine Geophysical Research, 38(1): 71–83
|
[46] |
Ye Jun, Shi Xuefa, Yang Yaomin, et al. 2012. The occurrence of gold in hydrothermal sulfide at Southwest Indian Ridge 49. 6°E. Acta Oceanologica Sinica, 31(6): 72–82
|
[47] |
Yuan Bo, Yu Hongjun, Yang Yaomin, et al. 2018. Zone refinement related to the mineralization process as evidenced by mineralogy and element geochemistry in a chimney fragment from the Southwest Indian Ridge at 49. 6°E. Chemical Geology, 482: 46–60
|
[48] |
Zhang Bosong. 2019. Study of mineralization at the Longqi and Duanqiao hydrothermal fields, Southwest Indian Ridge (in Chinese) [dissertation]. Beijing: China University of Geosciences (Beijing)
|
[49] |
Zhang Jing, Deng Jun, Chen Huayong, et al. 2014. LA-ICP-MS trace element analysis of pyrite from the Chang’an gold deposit, Sanjiang region, China: Implication for ore-forming process. Gondwana Research, 26(2): 557–575. doi: 10.1016/j.gr.2013.11.003
|
[50] |
Zhao Haixiang, Frimmel H E, Jiang Shaoyong, et al. 2011. LA-ICP-MS trace element analysis of pyrite from the Xiaoqinling gold district, China: Implications for ore genesis. Ore Geology Reviews, 43(1): 142–153. doi: 10.1016/j.oregeorev.2011.07.006
|