Volume 40 Issue 5
May  2021
Turn off MathJax
Article Contents
Shili Liao, Chuanwei Zhu, Jianping Zhou, Weiyong Liu, Junyu Yu, Jin Liang, Weifang Yang, Wei Li, Jia Liu, Chunhui Tao. Distal axis sulfide mineralization on the ultraslow-spreading Southwest Indian Ridge: an LA-ICP-MS study of pyrite from the East Longjing-2 hydrothermal field[J]. Acta Oceanologica Sinica, 2021, 40(5): 105-113. doi: 10.1007/s13131-020-1681-2
Citation: Shili Liao, Chuanwei Zhu, Jianping Zhou, Weiyong Liu, Junyu Yu, Jin Liang, Weifang Yang, Wei Li, Jia Liu, Chunhui Tao. Distal axis sulfide mineralization on the ultraslow-spreading Southwest Indian Ridge: an LA-ICP-MS study of pyrite from the East Longjing-2 hydrothermal field[J]. Acta Oceanologica Sinica, 2021, 40(5): 105-113. doi: 10.1007/s13131-020-1681-2

Distal axis sulfide mineralization on the ultraslow-spreading Southwest Indian Ridge: an LA-ICP-MS study of pyrite from the East Longjing-2 hydrothermal field

doi: 10.1007/s13131-020-1681-2
Funds:  The National Key Research and Development Program of China under contract Nos 2016YFC1401210, 2018YFC0309902 and 2017YFC0306603; Zhejiang Provincial Natural Science Foundation of China under contract No. LQ19D060002; the National Natural Science Foundation of China under contract No. 42006074; China Ocean Mineral Resources R&D Association Project under contract No. DY135-S1-1-02.
More Information
  • Corresponding author: taochunhuimail@163.com, taochunhui@sio.org.cn
  • Received Date: 2020-03-14
  • Accepted Date: 2020-07-13
  • Available Online: 2021-04-26
  • Publish Date: 2021-05-01
  • The newly discovered East Longjing-2 hydrothermal field (ELHF-2) is located on the Dragon Horn oceanic core complex of the ultraslow-spreading Southwest Indian Ridge, approximately 12 km from the ridge axis. This study measured the chemical compositions of pyrite from ELHF-2 using a laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to investigate the genesis of the field. Three generations of pyrite were classified, and found that: Py1 and Py2, rich in V, Mn, U, and Se, occur in altered basalt debris and the silica alteration matrix, respectively. Py3 was mainly intergrown with chalcopyrite in quartz veins and had higher Cu, In, Ag, Sb, and Au contents than Py1 and Py2. Some elements, such as Au, Se, and Pb, are likely presented as direct substitution with Fe2+ in pyrite, while Cu, Zn, Co, Ni, and Ag probably occur both as direct substitution with Fe and as distributed micro- to nanoparticle-sized sulfides. Meanwhile, the occurrence of V, Mn, and U is likely presented as oxide inclusions. Trace element geochemistry suggested that the pyrite was formed under high-temperature conditions, and the ore forming elements were likely derived from ultramafic rocks. In addition, Py1 and Py2 were formed under higher water/rock ratio and higher temperature conditions, with more seawater involvement compared with Py3. The formation of ELHF-2 was probably driven by exothermic serpentinization reactions with an additional magmatic heat. This study shows that high-temperature hydrothermal circulation driven by magmatic activity can be developed on distal rift flank areas of magma-starved ultraslow-spreading ridges.
  • loading
  • [1]
    Allen D E, Seyfried W E Jr. 2004. Serpentinization and heat generation: constraints from Lost City and Rainbow hydrothermal systems. Geochimica et Cosmochimica Acta, 68(6): 1347–1354. doi: 10.1016/j.gca.2003.09.003
    [2]
    Andersen C, Rüpke L, Hasenclever J, et al. 2015. Fault geometry and permeability contrast control vent temperatures at the Logatchev 1 hydrothermal field, Mid-Atlantic Ridge. Geology, 43(1): 51–54. doi: 10.1130/G36113.1
    [3]
    Beaulieu S E, Baker E T, German C R. 2015. Where are the undiscovered hydrothermal vents on oceanic spreading ridges?. Deep-Sea Research Part Ⅱ: Topical Studies in Oceanography, 121: 202–212. doi: 10.1016/j.dsr2.2015.05.001
    [4]
    Bemis K, Lowell R P, Farough A. 2012. Diffuse flow on and around hydrothermal vents at mid-ocean ridges. Oceanography, 25(1): 182–191. doi: 10.5670/oceanog.2012.16
    [5]
    Butler I B, Nesbitt R W. 1999. Trace element distributions in the chalcopyrite wall of a black smoker chimney: insights from laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS). Earth and Planetary Science Letters, 167(3–4): 335–345. doi: 10.1016/S0012-821X(99)00038-2
    [6]
    Chen Jie, Tao Chunhui, Liang Jin, et al. 2018. Newly discovered hydrothermal fields along the ultraslow-spreading Southwest Indian Ridge around 63°E. Acta Oceanologica Sinica, 37(11): 61–67. doi: 10.1007/s13131-018-1333-y
    [7]
    Corliss J B, Dymond J, Gordon L I, et al. 1979. Submarine thermal springs on the Galapagos Rift. Science, 203(4385): 1073–1083. doi: 10.1126/science.203.4385.1073
    [8]
    Danyushevsky L, Robinson P, Gilbert S, et al. 2011. Routine quantitative multi-element analysis of sulphide minerals by laser ablation ICP-MS: Standard development and consideration of matrix effects. Geochemistry: Exploration, Environment, Analysis, 11(1): 51–60. doi: 10.1144/1467-7873/09-244
    [9]
    Dias Á S, Barriga F J A S. 2006. Mineralogy and geochemistry of hydrothermal sediments from the serpentinite-hosted Saldanha hydrothermal field (36°34′N; 33°26′W) at MAR. Marine Geology, 225(1–4): 157–175. doi: 10.1016/j.margeo.2005.07.013
    [10]
    Dick H J B, Lin Jian, Schouten H. 2003. An ultraslow-spreading class of ocean ridge. Nature, 426(6965): 405–412. doi: 10.1038/nature02128
    [11]
    Fontaine F J, Rabinowicz M, Cannat M. 2017. Can high-temperature, high-heat flux hydrothermal vent fields be explained by thermal convection in the lower crust along fast-spreading Mid-Ocean Ridges?. Geochemistry, Geophysics, Geosystems, 18(5): 1907–1925. doi: 10.1002/2016GC006737
    [12]
    Fouquet Y, Cambon P, Etoubleau J, et al. 2010. Geodiversity of hydrothermal processes along the Mid-Atlantic Ridge–Ultramafic-hosted mineralization: A new type of oceanic Cu-Zn-Co-Au volcanogenic massive sulfide deposit. In: Rona P A, Devey C W, Dyment J, et al., eds. Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Washington DC: American Geophysical Union, 188, 321–367
    [13]
    Georgen J E, Lin Jian, Dick H J B. 2001. Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspots with the Southwest Indian Ridge: Effects of transform offsets. Earth and Planetary Science Letters, 187(3–4): 283–300. doi: 10.1016/S0012-821X(01)00293-X
    [14]
    German C R, Petersen S, Hannington M D. 2016. ydrothermal exploration of mid-ocean ridges: Where might the largest sulfide deposits be forming?. Chemical Geology, 420: 114–126. doi: 10.1016/j.chemgeo.2015.11.006
    [15]
    Hannington M D, De Ronde C D, Petersen S. 2005. Sea-floor tectonics and submarine hydrothermal systems. In: Hedenquist J W, Thompson J F H, Goldfarb R J, et al., eds. One Hundredth Anniversary Volume. McLean VA: Society of Economic Geologists, 100: 111–141
    [16]
    Hannington M D, Tivey M K, Larocque A C, et al. 1995. The occurrence of gold in sulfide deposits of the TAG hydrothermal field, Mid-Atlantic Ridge. The Canadian Mineralogist, 33(6): 1285–1310
    [17]
    Haymon R M. 1983. Growth history of hydrothermal black smoker chimneys. Nature, 301(5902): 695–698. doi: 10.1038/301695a0
    [18]
    Keith M, Häckel F, Haase K M, et al. 2016a. Trace element systematics of pyrite from submarine hydrothermal vents. Ore Geology Reviews, 72: 728–745. doi: 10.1016/j.oregeorev.2015.07.012
    [19]
    Keith M, Haase K M, Klemd R, et al. 2016b. Systematic variations of trace element and sulfur isotope compositions in pyrite with stratigraphic depth in the Skouriotissa volcanic-hosted massive sulfide deposit, Troodos ophiolite, Cyprus. Chemical Geology, 423: 7–18. doi: 10.1016/j.chemgeo.2015.12.012
    [20]
    Kelley D S, Karson J A, Blackman D K, et al. 2001. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N. Nature, 412(6843): 145–149. doi: 10.1038/35084000
    [21]
    Li Jiabiao, Jian Hanchao, Chen J Y, et al. 2015. Seismic observation of an extremely magmatic accretion at the ultraslow spreading Southwest Indian Ridge. Geophysical Research Letters, 42(8): 2656–2663. doi: 10.1002/2014GL062521
    [22]
    Liao Shili, Tao Chunhui, Li Huaming, et al. 2018. Bulk geochemistry, sulfur isotope characteristics of the Yuhuang-1 hydrothermal field on the ultraslow-spreading Southwest Indian Ridge. Ore Geology Reviews, 96: 13–27. doi: 10.1016/j.oregeorev.2018.04.007
    [23]
    Lowell R P, Gosnell S, Yang Yang. 2007. Numerical simulations of single-pass hydrothermal convection at mid-ocean ridges: Effects of the extrusive layer and temperature-dependent permeability. Geochemistry, Geophysics, Geosystems, 8(10): Q10011. doi: 10.1029/2007GC001653
    [24]
    Lowell R P, Rona P A. 2002. Seafloor hydrothermal systems driven by the serpentinization of peridotite. Geophysical Research Letters, 29(11): 26–1
    [25]
    Marques A F A, Barriga F J A S, Scott S D. 2007. Sulfide mineralization in an ultramafic-rock hosted seafloor hydrothermal system: From serpentinization to the formation of Cu–Zn–(Co)-rich massive sulfides. Marine Geology, 245(1–4): 20–39. doi: 10.1016/j.margeo.2007.05.007
    [26]
    Marques A F A, Scott S D, Guillong M. 2011. Magmatic degassing of ore-metals at the Menez Gwen: Input from the Azores plume into an active Mid-Atlantic Ridge seafloor hydrothermal system. Earth and Planetary Science Letters, 310(1–2): 145–160. doi: 10.1016/j.jpgl.2011.07.021
    [27]
    Martin A J, Keith M, McDonald I, et al. 2019. Trace element systematics and ore-forming processes in mafic VMS deposits: Evidence from the Troodos ophiolite, Cyprus. Ore Geology Reviews, 106: 205–225. doi: 10.1016/j.oregeorev.2019.01.024
    [28]
    Maslennikov V V, Maslennikova S P, Large R R, et al. 2009. Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy volcanic-hosted massive sulfide deposit (Southern Urals, Russia) using laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS). Economic Geology, 104(8): 1111–1141. doi: 10.2113/gsecongeo.104.8.1111
    [29]
    Melekestseva I Y, Zaykov V V, Nimis P, et al. 2013. Cu–(Ni–Co–Au)-bearing massive sulfide deposits associated with mafic–ultramafic rocks of the Main Urals Fault, South Urals: Geological structures, ore textural and mineralogical features, comparison with modern analogs. Ore Geology Reviews, 52(4): 18–36
    [30]
    Meng Xingwei, Li Xiaohu, Chu Fengyou, et al. 2020. Trace element and sulfur isotope compositions for pyrite across the mineralization zones of a sulfide chimney from the East Pacific Rise (1–2°S). Ore Geology Reviews, 116: 103209. doi: 10.1016/j.oregeorev.2019.103209
    [31]
    Metz S, Trefry J H. 2000. Chemical and mineralogical influences on concentrations of trace metals in hydrothermal fluids. Geochimica et Cosmochimica Acta, 64(13): 2267–2279. doi: 10.1016/S0016-7037(00)00354-9
    [32]
    Mills R A, Thomson J, Elderfield H, et al. 1994. Uranium enrichment in metalliferous sediments from the Mid-Atlantic Ridge. Earth and Planetary Science Letters, 124(1–4): 35–47. doi: 10.1016/0012-821X(94)00083-2
    [33]
    Murton B J, Lehrmann B, Dutrieux A M, et al. 2019. Geological fate of seafloor massive sulphides at the tag hydrothermal field (mid-Atlantic ridge). Ore Geology Reviews, 107: 903–925. doi: 10.1016/j.oregeorev.2019.03.005
    [34]
    Reich M, Deditius A, Chryssoulis S, et al. 2013. Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: A SIMS/EMPA trace element study. Geochimica et Cosmochimica Acta, 104: 42–62. doi: 10.1016/j.gca.2012.11.006
    [35]
    Reich M, Kesler S E, Utsunomiya S, et al. 2005. Solubility of gold in Arsenian pyrite. Geochimica et Cosmochimica Acta, 69(11): 2781–2796. doi: 10.1016/j.gca.2005.01.011
    [36]
    Sauter D, Cannat M, Meyzen C, et al. 2009. Propagation of a melting anomaly along the ultraslow Southwest Indian Ridge between 46°E and 52°20’E: Interaction with the Crozet hotspot?. Geophysical Journal International, 179(2): 687–699. doi: 10.1111/j.1365-246X.2009.04308.x
    [37]
    Tao Chunhui, Li Huaiming, Huang Wei, et al. 2011. Mineralogical and geochemical features of sulfide chimneys from the 49°39’ E hydrothermal field on the Southwest Indian Ridge and their geological inferences. Chinese Science Bulletin, 56(26): 2828–2838. doi: 10.1007/s11434-011-4619-4
    [38]
    Tao Chunhui, Li Huaming, Jin Xiaobing, et al. 2014. Seafloor hydrothermal activity and polymetallic sulfide exploration on the Southwest Indian Ridge. Chinese Science Bulletin, 59(19): 2266–2276. doi: 10.1007/s11434-014-0182-0
    [39]
    Tao Chunhui, Lin Jian, Guo Shiqin, et al. 2012. First active hydrothermal vents on an ultraslow-spreading center: Southwest Indian Ridge. Geology, 40(1): 47–50. doi: 10.1130/G32389.1
    [40]
    Tao Chunhui, Seyfried W E Jr, Lowell R P, et al. 2020. Deep high-temperature hydrothermal circulation in a detachment faulting system on the ultra-slow spreading Ridge. Nature Communications, 11: 1300. doi: 10.1038/s41467-020-15062-w
    [41]
    Wang Yejian, Han Xiqiu, Petersen S, et al. 2017. Mineralogy and trace element geochemistry of sulfide minerals from the Wocan Hydrothermal Field on the slow-spreading Carlsberg Ridge, Indian Ocean. Ore Geology Reviews, 84: 1–19. doi: 10.1016/j.oregeorev.2016.12.020
    [42]
    Wang Yejian, Han Xiqiu, Petersen S, et al. 2018. Trace metal distribution in sulfide minerals from ultramafic-hosted hydrothermal systems: examples from the Kairei vent field, central Indian ridge. Minerals, 8(11): 526. doi: 10.3390/min8110526
    [43]
    Whitney D L, Evans B W. 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185–187. doi: 10.2138/am.2010.3371
    [44]
    Wohlgemuth-Ueberwasser C C, Viljoen F, Petersen S, et al. 2015. Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides: An in-situ LA-ICP-MS study. Geochimica et Cosmochimica Acta, 159: 16–41. doi: 10.1016/j.gca.2015.03.020
    [45]
    Yang Weifang, Tao Chunhui, Li Huaming, et al. 2016. 230Th/238U dating of hydrothermal sulfides from Duanqiao hydrothermal field, Southwest Indian Ridge. Marine Geophysical Research, 38(1): 71–83
    [46]
    Ye Jun, Shi Xuefa, Yang Yaomin, et al. 2012. The occurrence of gold in hydrothermal sulfide at Southwest Indian Ridge 49. 6°E. Acta Oceanologica Sinica, 31(6): 72–82
    [47]
    Yuan Bo, Yu Hongjun, Yang Yaomin, et al. 2018. Zone refinement related to the mineralization process as evidenced by mineralogy and element geochemistry in a chimney fragment from the Southwest Indian Ridge at 49. 6°E. Chemical Geology, 482: 46–60
    [48]
    Zhang Bosong. 2019. Study of mineralization at the Longqi and Duanqiao hydrothermal fields, Southwest Indian Ridge (in Chinese) [dissertation]. Beijing: China University of Geosciences (Beijing)
    [49]
    Zhang Jing, Deng Jun, Chen Huayong, et al. 2014. LA-ICP-MS trace element analysis of pyrite from the Chang’an gold deposit, Sanjiang region, China: Implication for ore-forming process. Gondwana Research, 26(2): 557–575. doi: 10.1016/j.gr.2013.11.003
    [50]
    Zhao Haixiang, Frimmel H E, Jiang Shaoyong, et al. 2011. LA-ICP-MS trace element analysis of pyrite from the Xiaoqinling gold district, China: Implications for ore genesis. Ore Geology Reviews, 43(1): 142–153. doi: 10.1016/j.oregeorev.2011.07.006
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (960) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return