Volume 39 Issue 11
Dec.  2020
Turn off MathJax
Article Contents
Zhehao Zheng, Wei Zhuang, Jianyu Hu, Zelun Wu, Changjian Liu. Surface water exchanges in the Luzon Strait as inferred from Lagrangian coherent structures[J]. Acta Oceanologica Sinica, 2020, 39(11): 21-32. doi: 10.1007/s13131-020-1677-y
Citation: Zhehao Zheng, Wei Zhuang, Jianyu Hu, Zelun Wu, Changjian Liu. Surface water exchanges in the Luzon Strait as inferred from Lagrangian coherent structures[J]. Acta Oceanologica Sinica, 2020, 39(11): 21-32. doi: 10.1007/s13131-020-1677-y

Surface water exchanges in the Luzon Strait as inferred from Lagrangian coherent structures

doi: 10.1007/s13131-020-1677-y
Funds:  The National Key Research and Development Program of China under contract No. 2016YFA0601201; the National Natural Science Foundation of China under contract Nos 91858202, 91958203, 41730533 and 41776003.
More Information
  • Corresponding author: E-mail: wzhuang@xmu.edu.cn
  • Received Date: 2020-05-01
  • Accepted Date: 2020-08-10
  • Available Online: 2020-12-28
  • Publish Date: 2020-11-25
  • This study presents a Lagrangian view of upper water exchanges across the Luzon Strait based on the finite-time Lyapunov exponents (FTLE) fields computed from the surface geostrophic current. The Lagrangian coherent structures (LCSs) extracted from the FTLE fields well identify the typical flow patterns and eddy activities around the Luzon Strait. In addition, they reveal the intricate transport paths and fluid domains, which are validated by the tracks of satellite-tracked surface drifters and cannot be visually recognized in the velocity maps. The FTLE fields indicate that there are mainly four types of transport patterns near the Luzon Strait; among them, the Kuroshio northward-flowing “leaping” pattern and the clockwise rotating “looping” pattern occur more frequently than the “leaking” pattern of the direct Kuroshio branch into the SCS and the “outflowing” pattern from the SCS to the Pacific. The eddy shedding events of the Kuroshio at the Luzon Strait are further analyzed, and the importance of considering LCSs in estimating transport by eddies is highlighted. The anticyclonic eddy (ACE) shedding cases reveal that ACEs mainly originate from the looping paths of Kuroshio and thus could effectively trap the Kuroshio water before eddy detachments. LCSs provide useful information to predict the positions of the upstream waters that finally enter the ACEs. In contrast, LCS snapshots indicate that during the formation of cyclonic eddies (CEs), most CEs are not connected with the pathways of Kuroshio water. Hence, the contribution of CEs to the surface water exchanges from the Pacific into the SCS is tiny.
  • loading
  • [1]
    Andrade-Canto F, Sheinbaum J, Sansón L Z. 2013. A Lagrangian approach to the Loop Current eddy separation. Nonlinear Processes in Geophysics, 20(1): 85–96. doi: 10.5194/npg-20-85-2013
    [2]
    Beron-Vera F J, Olascoaga M J, Goni G J. 2008. Oceanic mesoscale eddies as revealed by Lagrangian coherent structures. Geophysical Research Letters, 35(12): L12603. doi: 10.1029/2008GL033957
    [3]
    Branicki M, Wiggins S. 2009. Finite-time Lagrangian transport analysis: stable and unstable manifolds of hyperbolic trajectories and finite-time Lyapunov exponent. Nonlinear Processes in Geophysics, 17(1): 1–36
    [4]
    Caruso M J, Gawarkiewicz G G, Beardsley R C. 2006. Interannual variability of the Kuroshio intrusion in the South China Sea. Journal of Oceanography, 62(4): 559–575. doi: 10.1007/s10872-006-0076-0
    [5]
    Centurioni L R, Niiler P P, Lee D K. 2004. Observations of inflow of Philippine Sea surface water into the South China Sea through the Luzon Strait. Journal of Physical Oceanography, 34(1): 113–121. doi: 10.1175/1520-0485(2004)034<0113:OOIOPS>2.0.CO;2
    [6]
    Chu P C, Li Rongfeng. 2000. South China Sea isopycnal-surface circulation. Journal of Physical Oceanography, 30(9): 2419–2438. doi: 10.1175/1520-0485(2000)030<2419:SCSISC>2.0.CO;2
    [7]
    D’Ovidio F, Fernández V, Hernández-García E, et al. 2004. Mixing structures in the Mediterranean Sea from finite-size Lyapunov exponents. Geophysical Research Letters, 31(17): L17203
    [8]
    Fang Guohong, Wang Yonggang, Wei Zexun, et al. 2009. Interocean circulation and heat and freshwater budgets of the South China Sea based on a numerical model. Dynamics of Atmospheres and Oceans, 47(1–3): 55–72. doi: 10.1016/j.dynatmoce.2008.09.003
    [9]
    Feng Ming. 2009. Eddy-induced cross-shelf phytoplankton transport along the downwelling coast off Western Australia. Journal of Tropical Oceanography, (5): 6–10
    [10]
    Gordon A L, Huber B A, Metzger E J, et al. 2012. South China Sea throughflow impact on the Indonesian throughflow. Geophysical Research Letters, 39(11): L11602. doi: 10.1029/2012GL052021
    [11]
    Haller G. 2001. Lagrangian structures and the rate of strain in a partition of two-dimensional turbulence. Physics of Fluids, 13(11): 3365–3385. doi: 10.1063/1.1403336
    [12]
    Haller G. 2015. Lagrangian coherent structures. Annual Review of Fluid Mechanics, 47: 137–162. doi: 10.1146/annurev-fluid-010313-141322
    [13]
    Haller G, Yuan Guocheng. 2000. Lagrangian coherent structures and mixing in two-dimensional turbulence. Physica D: Nonlinear Phenomena, 147(3–4): 352–370
    [14]
    Harrison C S, Glatzmaier G A. 2010. Lagrangian coherent structures in the California Current System—sensitivities and limitations. Geophysical & Astrophysical Fluid Dynamics, 106(1): 22–44. doi: 10.1080/03091929.2010.532793
    [15]
    Huang Bangqin, Hu Jun, Xu Hongzhou, et al. 2010. Phytoplankton community at warm eddies in the northern South China Sea in winter 2003/2004. Deep Sea Research Part Ⅱ : Topical Studies in Oceanography, 57(19–20): 1792–1798
    [16]
    Huang Gaolong, Wei Xing, Zhan Haigang. 2015. Lagrangian analysis of drifter trajectories near the Luzon Strait. Journal of Tropical Oceanography (in Chinese), 34(1): 15–22
    [17]
    Huang Zhida, Zhuang Wei, Hu Jianyu, et al. 2019. Observations of the Luzon Cold Eddy in the northeastern South China Sea in May 2017. Journal of Oceanography, 75(5): 415–422. doi: 10.1007/s10872-019-00510-z
    [18]
    Huhn F, Von Kameke A, Allen-Perkins S, et al. 2012. Horizontal Lagrangian transport in a tidal-driven estuary—Transport barriers attached to prominent coastal boundaries. Continental Shelf Research, 39–40: 1–13. doi: 10.1016/J.CSR.2012.03.005
    [19]
    Jia Yinglai, Chassignet E P. 2011. Seasonal variation of eddy shedding from the Kuroshio intrusion in the Luzon Strait. Journal Oceanography, 67: 601–611. doi: 10.1007/s10872-011-0060-1
    [20]
    Lehahn Y, d’Ovidio F, Lévy M, et al. 2007. Stirring of the northeast Atlantic spring bloom: A Lagrangian analysis based on multisatellite data. Journal of Geophysical Research, 112(C8): C08005
    [21]
    Li Li, Nowlin W D Jr, Su Jilan. 1998. Anticyclonic rings from the Kuroshio in the South China Sea. Deep Sea Research Part I: Oceanographic Research Papers, 45(9): 1469–1482. doi: 10.1016/S0967-0637(98)00026-0
    [22]
    Li Jiaxun, Zhang Ren, Jin Baogang. 2011. Eddy characteristics in the northern South China Sea as Inferred from lagrangian drifter data. Ocean Science, 7(5): 661–669. doi: 10.5194/os-7-661-2011
    [23]
    Lian Zhan, Sun Baonan, Wei Zexun, et al. 2019. Comparison of eight detection algorithms for the quantification and characterization of mesoscale eddies in the South China Sea. Journal Atmospheric and Oceanic Technology, 36(7): 1361–1380. doi: 10.1175/JTECH-D-18-0201.1
    [24]
    Liu Changjian, Du Yan, Zhuang Wei, et al. 2013. Evolution and propagation of a mesoscale eddy in the northern South China Sea during winter. Acta Oceanologica Sinica, 32(7): 1–7. doi: 10.1007/s13131-013-0325-1
    [25]
    Lumpkin R, Johnson G C. 2013. Global ocean surface velocities from drifters: Mean, variance, El Niño-Southern Oscillation response, and seasonal cycle. Journal of Geophysical Research: Oceans, 118(6): 2992–3006. doi: 10.1002/Jgrc.20210
    [26]
    Metzger E J, Hurlburt H E. 2001. The nondeterministic nature of Kuroshio penetration and eddy shedding in the South China Sea. Journal of Physical Oceanography, 31(7): 1712–1732. doi: 10.1175/1520-0485(2001)031<1712:TNNOKP>2.0.CO;2
    [27]
    Nan Feng, Xue Huijie, Chai Fei, et al. 2011. Identification of different types of Kuroshio intrusion into the South China Sea. Ocean Dynamics, 61(9): 1291–1304. doi: 10.1007/s10236-011-0426-3
    [28]
    Nan Feng, Xue Huijie, Yu Fei. 2015. Kuroshio intrusion into the South China Sea: A review. Progress in Oceanography, 137: 314–333. doi: 10.1016/j.pocean.2014.05.012
    [29]
    Peacock T, Haller G. 2013. Lagrangian coherent structures: The hidden skeleton of fluid flows. Physics Today, 66(2): 41–47. doi: 10.1063/PT.3.1886
    [30]
    Pujol M I, Faugère Y, Taburet G, et al. 2016. DUACS DT2014: The new multi-mission altimeter data set reprocessed over 20 years. Ocean Science, 12(5): 1067–1090. doi: 10.5194/os-12-1067-2016
    [31]
    Qian Yukun, Peng Shiqiu, Li Yineng. 2013. Eulerian and lagrangian statistics in the South China Sea as deduced from surface drifters. Journal of Physical Oceanography, 43(4): 726–743. doi: 10.1175/JPO-D-12-0170.1
    [32]
    Qiu Bo, Chen Shuiming. 2010. Interannual-to-decadal variability in the bifurcation of the North equatorial current off the Philippines. Journal of Physical Oceanography, 40(11): 2525–2538. doi: 10.1175/2010JPO4462.1
    [33]
    Qiu Bo, Lukas R. 1996. Seasonal and interannual variability of the North Equatorial Current, the Mindanao Current, and the Kuroshio along the Pacific western boundary. Journal of Geophysical Research: Oceans, 101(C5): 12315–12330. doi: 10.1029/95JC03204
    [34]
    Qiu Chunhua, Mao Huabin, Liu Hailong, et al. 2019. Deformation of a warm eddy in the northern South China Sea. Journal of Geophysical Research: Oceans, 124(8): 5551–5564. doi: 10.1029/2019JC015288
    [35]
    Qu Tangdong, Du Yan, Meyers G, et al. 2005. Connecting the tropical Pacific with Indian Ocean through South China Sea. Geophysical Research Letters, 32(24): L24609. doi: 10.1029/2005GL024698
    [36]
    Qu Tangdong, Du Yan, Sasaki H. 2006. South China Sea throughflow: A heat and freshwater conveyor. Geophysical Research Letters, 33(23): L23617. doi: 10.1029/2006GL028350
    [37]
    Qu Tangdong, Kim Y Y, Yaremchuk M, et al. 2004. Can Luzon Strait transport play a role in conveying the impact of ENSO to the South China Sea. Journal of Climate, 17(18): 3644–3657. doi: 10.1175/1520-0442(2004)017<3644:CLSTPA>2.0.CO;2
    [38]
    Qu Tangdong, Mitsudera H, Yamagata T. 2000. Intrusion of the North Pacific Waters into the South China Sea. Journal of Geophysical Research: Oceans, 105(C3): 6415–6424. doi: 10.1029/1999JC900323
    [39]
    Shadden S C, Lekien F, Marsden J E. 2005. Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D: Nonlinear Phenomena, 212(3–4): 271–304
    [40]
    Shaw P T. 1991. The seasonal variation of the intrusion of the Philippine Sea water into the South China Sea. Journal of Geophysical Research: Oceans, 96(C1): 821–827. doi: 10.1029/90JC02367
    [41]
    Sheremet V A. 2001. Hysteresis of a western boundary current leaping across a gap. Journal of Physical Oceanography, 31(5): 1247–1259. doi: 10.1175/1520-0485(2001)031<1247:HOAWBC>2.0.CO;2
    [42]
    Wang Dongxiao, Liu Qinyan, Huang Ruixin, et al. 2006. Interannual variability of the South China Sea throughflow inferred from wind data and an ocean data assimilation product. Geophysical Research Letters, 33(14): L14605. doi: 10.1029/2006GL026316
    [43]
    Wang Xiaowei, Liu Zhiyu, Peng Shiqiu. 2017. Impact of tidal mixing on water mass transformation and circulation in the South China Sea. Journal of Physical Oceanography, 47(2): 419–432. doi: 10.1175/JPO-D-16-0171.1
    [44]
    Wang Huizan, Liu Quanhong, Yan Hengqian, et al. 2019. The interactions between surface Kuroshio transport and the eddy field east of Taiwan using satellite altimeter data. Acta Oceanologica Sinica, 38(4): 116–125. doi: 10.1007/s13131-019-1417-3
    [45]
    Wang Guihua, Su Jilan, Chu P C. 2003. Mesoscale eddies in the South China Sea observed with altimeter data. Geophysical Research Letters, 30(21): 2121. doi: 10.1029/2003GL018532
    [46]
    Wang Dongxiao, Xu Hongzhou, Lin Jing, et al. 2008. Anticyclonic eddies in the northeastern South China Sea during winter 2003/2004. Journal of Oceanography, 64(6): 925–935. doi: 10.1007/s10872-008-0076-3
    [47]
    Wei Zexun, Li Shujiang, Susanto R D, et al. 2019. An overview of 10-year observation of the South China Sea branch of the Pacific to Indian Ocean throughflow at the Karimata Strait. Acta Oceanologica Sinica, 38(4): 1–11. doi: 10.1007/s13131-019-1410-x
    [48]
    Wei Xin, Zhan Haigang, Cai Shuqun, et al. 2018. Detecting the transport barriers in the Pearl River estuary, Southern China with the aid of Lagrangian coherent structures. Estuarine, Coastal and Shelf Science, 205: 10–20. doi: 10.1016/j.ecss.2018.03.010
    [49]
    Wiggins S. 2005. The dynamical systems approach to lagrangian transport in oceanic flows. Annual Review of Fluid Mechanics, 37: 295–328. doi: 10.1146/annurev.fluid.37.061903.175815
    [50]
    Xue Huijie, Chai Fei, Pettigrew N, et al. 2004. Kuroshio intrusion and the circulation in the South China Sea. Journal of Geophysical Research, 109(C2): C02017
    [51]
    Yaremchuk M, Qu Tangdong. 2004. Seasonal variability of the large-scale currents near the coast of the Philippines. Journal of Physical Oceanography, 34(4): 844–855. doi: 10.1175/1520-0485(2004)034<0844:SVOTLC>2.0.CO;2
    [52]
    Yuan Dongliang, Han Weiqing, Hu Dunxin. 2006. Surface Kuroshio path in the Luzon Strait area derived from satellite remote sensing data. Journal of Geophysical Research: Oceans, 111(C11): C11007. doi: 10.1029/2005JC003412
    [53]
    Zhang Zhiwei, Zhao Wei, Qiu Bo, et al. 2017. Anticyclonic eddy sheddings from Kuroshio loop and the accompanying cyclonic eddy in the northeastern South China Sea. Journal of Physical Oceanography, 47(6): 1243–1259. doi: 10.1175/JPO-D-16-0185.1
    [54]
    Zheng Quanan, Ho Chungru, Xie Lingling, et al. 2019. A case study of a Kuroshio main path cut-off event and impacts on the South China Sea in fall-winter 2013–2014. Acta Oceanologica Sinica, 38(4): 12–19. doi: 10.1007/s13131-019-1411-9
    [55]
    Zhu Jia, Zheng Quanan, Hu Jianyu, et al. 2019. Classification and 3-D distribution of upper layer water masses in the northern South China Sea. Acta Oceanologica Sinica, 38(4): 126–135. doi: 10.1007/s13131-019-1418-2
    [56]
    Zhuang Wei, Xie Shangping, Wang Dongxiao, et al. 2010. Intraseasonal variability in sea surface height over the South China Sea. Journal of Geophysical Research: Oceans, 115(C4): C04010. doi: 10.1029/2009JC005647
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (454) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return