Volume 39 Issue 9
Sep.  2020
Turn off MathJax
Article Contents
Xiao Han, Jingwei Yin, Yanming Yang, Hongtao Wen, Longxiang Guo. Under-ice ambient noise in the Arctic Ocean: observations at the long-term ice station[J]. Acta Oceanologica Sinica, 2020, 39(9): 125-132. doi: 10.1007/s13131-020-1652-7
Citation: Xiao Han, Jingwei Yin, Yanming Yang, Hongtao Wen, Longxiang Guo. Under-ice ambient noise in the Arctic Ocean: observations at the long-term ice station[J]. Acta Oceanologica Sinica, 2020, 39(9): 125-132. doi: 10.1007/s13131-020-1652-7

Under-ice ambient noise in the Arctic Ocean: observations at the long-term ice station

doi: 10.1007/s13131-020-1652-7
Funds:  The National Natural Science Foundation of China under contract Nos 61631008, 61901136 and 51779061; the National Key Research and Development Program of China under contract No. 2018YFC1405904; the Fok Ying-Tong Education Foundation under contract No. 151007; the Opening Funding of Science and Technology on Sonar Laboratory under contract No. 6142109KF201802; the Innovation Special Zone of National Defense Science and Technology.
More Information
  • Corresponding author: E-mail: yinjingwei@hrbeu.edu.cn
  • Received Date: 2019-12-14
  • Accepted Date: 2020-03-24
  • Available Online: 2020-12-28
  • Publish Date: 2020-09-25
  • Under-ice ambient noise in the Arctic Ocean is studied using the data recorded by autonomous hydrophones at the long-term ice station during the 9th Chinese National Arctic Research Expedition. Time-frequency analysis of two 7-s-long ice-induced noise samples shows that both ice collision and ice breaking noise have many outliers in the time-domain (impulsive characteristic) and abundant frequency components in the frequency-domain. Ice collision noise lasts for several seconds while the duration of ice breaking noise is much shorter (i.e., less than tens of milliseconds). Gaussian distribution and symmetric alpha stable (sαs) distribution are used in this paper to fit the impulsive under-ice noise. The sαs distribution can achieve better performance as it can track the heavy tails of impulsive noise while Gaussian distribution fails. This paper also analyzes the meteorological variables during the under-ice noise observation experiment and deduces that the impulsive ambient noise was caused by the combined force of high wind speed and increasing atmosphere temperature on the ice canopy. The Pearson correlation coefficients between long-term power spectral density variations of under-ice ambient noise and meteorological variables are also studied in this paper.
  • loading
  • [1]
    Audoly C, Gaggero T, Baudin E, et al. 2017. Mitigation of underwater radiated noise related to shipping and its impact on marine life: A practical approach developed in the scope of AQUO project. IEEE Journal of Oceanic Engineering, 42(2): 373–387. doi: 10.1109/JOE.2017.2673938
    [2]
    Bittencourt L, Lima I M S, Andrade L G, et al. 2017. Underwater noise in an impacted environment can affect Guiana dolphin communication. Marine Pollution Bulletin, 114(2): 1130–1134. doi: 10.1016/j.marpolbul.2016.10.037
    [3]
    Brooker A, Humphrey V. 2016. Measurement of radiated underwater noise from a small research vessel in shallow water. Ocean Engineering, 120: 182–189. doi: 10.1016/j.oceaneng.2015.09.048
    [4]
    Carey W M, Evans R B. 2011. Ocean Ambient Noise: Measurement and Theory. New York: Springer, 85–93
    [5]
    Da L L, Wang C, Han M, et al. 2014. Ambient noise spectral properties in the north area of Xisha. Acta Oceanologica Sinica, 33(12): 206–211. doi: 10.1007/s13131-014-0569-4
    [6]
    Deane G B, Glowacki O, Tegowski J, et al. 2014. Directionality of the ambient noise field in an Arctic, glacial bay. The Journal of the Acoustical Society of America, 136(5): EL350–EL356. doi: 10.1121/1.4897354
    [7]
    Ganton J H, Milne A R. 1965. Temperature- and wind-dependent ambient noise under midwinter pack ice. The Journal of the Acoustical Society of America, 38(3): 406–411. doi: 10.1121/1.1909697
    [8]
    Greening M V, Zakarauskas P. 1994. Spatial and source level distributions of ice cracking in the Arctic Ocean. The Journal of the Acoustical Society of America, 95(2): 783–790. doi: 10.1121/1.408388
    [9]
    Huang R K, Zheng H, Kuruoglu E E. 2013. Time-varying ARMA stable process estimation using sequential Monte Carlo. Signal, Image and Video Processing, 7(5): 951–958. doi: 10.1007/s11760-011-0285-x
    [10]
    Johannessen O M, Sagen H, Sandven S, et al. 2003. Hotspots in ambient noise caused by ice-edge eddies in the Greenland and Barents Seas. IEEE Journal of Oceanic Engineering, 28(2): 212–228. doi: 10.1109/JOE.2003.812497
    [11]
    Kinda G B, Simard Y, Gervaise C, et al. 2013. Under-ice ambient noise in Eastern Beaufort Sea, Canadian Arctic, and its relation to environmental forcing. The Journal of the Acoustical Society of America, 134(1): 77–87. doi: 10.1121/1.4808330
    [12]
    Kinda G B, Simard Y, Gervaise C, et al. 2015. Arctic underwater noise transients from sea ice deformation: Characteristics, annual time series, and forcing in Beaufort Sea. The Journal of the Acoustical Society of America, 138(4): 2034–2045. doi: 10.1121/1.4929491
    [13]
    Lewis J K. 1994. Relating Arctic ambient noise to thermally induced fracturing of the ice pack. The Journal of the Acoustical Society of America, 95(3): 1378–1385. doi: 10.1121/1.408576
    [14]
    Lewis J K, Denner W W. 1987. Arctic ambient noise in the Beaufort Sea: Seasonal space and time scales. The Journal of the Acoustical Society of America, 82(3): 988–997. doi: 10.1121/1.395299
    [15]
    Lewis J K, Denner W W. 1988a. Arctic ambient noise in the Beaufort Sea: Seasonal relationships to sea ice kinematics. The Journal of the Acoustical Society of America, 83(2): 549–565. doi: 10.1121/1.396149
    [16]
    Lewis J K, Denner W W. 1988b. Higher frequency ambient noise in the Arctic Ocean. The Journal of the Acoustical Society of America, 84(4): 1444–1455. doi: 10.1121/1.396591
    [17]
    Lin J H, Jiang G J, Gao W, et al. 2005. Measurements and analyses of the vertical distribution of ocean ambient noise. Haiyang Xuebao (in Chinese), 27(3): 32–38
    [18]
    Makris N C, Dyer I. 1986. Environmental correlates of pack ice noise. The Journal of the Acoustical Society of America, 79(5): 1434–1440. doi: 10.1121/1.393671
    [19]
    Makris N C, Dyer I. 1991. Environmental correlates of Arctic ice-edge noise. The Journal of the Acoustical Society of America, 90(6): 3288–3298. doi: 10.1121/1.401439
    [20]
    McCulloch J H. 1986. Simple consistent estimators of stable distribution parameters. Communications in Statistics-Simulation and Computation, 15(4): 1109–1136. doi: 10.1080/03610918608812563
    [21]
    Milne A R, Ganton J H. 1964. Ambient noise under Arctic sea ice. The Journal of the Acoustical Society of America, 36(5): 855–863. doi: 10.1121/1.1919103
    [22]
    Ozanich E, Gerstoft P, Worcester P F, et al. 2017. Eastern Arctic ambient noise on a drifting vertical array. The Journal of the Acoustical Society of America, 142(4): 1997–2006
    [23]
    Pritchard R S. 1984. Arctic Ocean background noise caused by ridging of sea ice. The Journal of the Acoustical Society of America, 75(2): 419–427. doi: 10.1121/1.390465
    [24]
    Roth E H, Hildebrand J A, Wiggins S M, et al. 2012. Underwater ambient noise on the Chukchi Sea continental slope from 2006–2009. The Journal of the Acoustical Society of America, 131(1): 104–110. doi: 10.1121/1.3664096
    [25]
    Shen X R, Zhang H, Xu Y, et al. 2016. Observation of alpha-stable noise in the laser gyroscope data. IEEE Sensors Journal, 16(7): 1998–2003. doi: 10.1109/JSEN.2015.2506120
    [26]
    Stoyanov S V, Samorodnitsky G, Rachev S, et al. 2006. Computing the portfolio conditional value-at-risk in the alpha-stable case. Probability and Mathematical Statistics, 26(1): 1–22
    [27]
    Urick R J. 1984. Ambient Noise in the Sea. Washington, DC: Undersea Warfare Technology Office, Naval Sea System Command, Department of the Navy, 3–21
    [28]
    Yang Q L, Yang K D, Duan S L. 2018. A method for noise source levels inversion with underwater ambient noise generated by typhoon in Deep Ocean. Journal of Theoretical and Computational Acoustics, 26(2): 1850007. doi: 10.1142/S259172851850007X
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (396) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return