Volume 39 Issue 9
Sep.  2020
Turn off MathJax
Article Contents
Renming Jia, Xinyue Mu, Min Chen, Jing Zhu, Bo Wang, Xiaopeng Li, A S Astakhov, Minfang Zheng, Yusheng Qiu. Sources of particulate organic matter in the Chukchi and Siberian shelves: clues from carbon and nitrogen isotopes[J]. Acta Oceanologica Sinica, 2020, 39(9): 96-108. doi: 10.1007/s13131-020-1650-9
Citation: Renming Jia, Xinyue Mu, Min Chen, Jing Zhu, Bo Wang, Xiaopeng Li, A S Astakhov, Minfang Zheng, Yusheng Qiu. Sources of particulate organic matter in the Chukchi and Siberian shelves: clues from carbon and nitrogen isotopes[J]. Acta Oceanologica Sinica, 2020, 39(9): 96-108. doi: 10.1007/s13131-020-1650-9

Sources of particulate organic matter in the Chukchi and Siberian shelves: clues from carbon and nitrogen isotopes

doi: 10.1007/s13131-020-1650-9
Funds:  The National Natural Science Foundation of China under contract No. 41721005; the China Ocean Mineral Resources R&D Association (COMRA) Program under contract No. DY135-E2-2-03; the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology under contract No. 2018SDKJ0104-3; the Ministry of Science and Education of Russia Project under contract No. АААА-А17-117030110033-0.
More Information
  • Corresponding author: E-mail: mchen@xmu.edu.cn
  • Received Date: 2019-07-17
  • Accepted Date: 2019-11-06
  • Available Online: 2020-12-28
  • Publish Date: 2020-09-25
  • The stable isotopic composition (δ13C and δ15N) and carbon/nitrogen ratio (C/N) of particulate organic matter (POM) in the Chukchi and East Siberian shelves from July to September, 2016 were measured to evaluate the spatial variability and origin of POM. The δ13CPOC values were in the range of −29.5‰ to −17.5‰ with an average of −25.9‰±2.0‰, and the δ15NPN values ranged from 3.9‰ to 13.1‰ with an average of 8.0‰±1.6‰. The C/N ratios in the East Siberian shelf were generally higher than those in the Chukchi shelf, while the δ13C and δ15N values were just the opposite. Abnormally low C/N ratios (<4), low δ13CPOC (almost −28‰) and high δ15NPN (>10‰) values were observed in the Wrangel Island polynya, which was attributed to the early bloom of small phytoplankton. The contributions of terrestrial POM, bloom-produced POM and non-bloom marine POM were estimated using a three end-member mixing model. The spatial distribution of terrestrial POM showed a high fraction in the East Siberian shelf and decreased eastward, indicating the influence of Russian rivers. The distribution of non-bloom marine POM showed a high fraction in the Chukchi shelf with the highest fraction occurring in the Bering Strait and decreased westward, suggesting the stimulation of biological production by the Pacific inflow in the Chukchi shelf. The fractions of bloom-produced POM were highest in the winter polynya and gradually decreased toward the periphery. A negative relationship between the bloom-produced POM and the sea ice meltwater inventory was observed, indicating that the net sea ice loss promotes early bloom in the polynya. Given the high fraction of bloom-produced POM, the early bloom of phytoplankton in the polynyas may play an important role on marine production and POM export in the Arctic shelves.
  • loading
  • [1]
    Aagaard K, Carmack E C. 1989. The role of sea ice and other fresh water in the Arctic circulation. Journal of Geophysical Research: Oceans, 94(C10): 14485–14498. doi: 10.1029/JC094iC10p14485
    [2]
    Alkire M B, Morison J, Andersen R. 2015. Variability in the meteoric water, sea-ice melt, and Pacific water contributions to the central Arctic Ocean, 2000−2014. Journal of Geophysical Research: Oceans, 120(3): 1573–1598. doi: 10.1002/2014JC010023
    [3]
    Ambrose W G, Renaud P E. 1995. Benthic response to water column productivity patterns: Evidence for benthic−pelagic coupling in the Northeast Water Polynya. Journal of Geophysical Research: Oceans, 100(C3): 4411–4421. doi: 10.1029/94JC01982
    [4]
    Anderson L G, Björk G, Jutterström S, et al. 2011. East Siberian Sea, an Arctic region of very high biogeochemical activity. Biogeosciences, 8(6): 1745–1754. doi: 10.5194/bg-8-1745-2011
    [5]
    Ardyna M, Babin M, Devred E, et al. 2017. Shelf−basin gradients shape ecological phytoplankton niches and community composition in the coastal Arctic Ocean (Beaufort Sea). Limnology and Oceanography, 62(5): 2113–2132. doi: 10.1002/lno.10554
    [6]
    Arrigo K R. 2007. Physical control of primary productivity in Arctic and Antarctic polynyas. In: Smith W O, Barber D G, eds. Polynyas: Windows to the World. Elsevier Oceanography Series, 74: 223–238
    [7]
    Arrigo K R, Perovich D K, Pickart R S, et al. 2012. Massive phytoplankton blooms under Arctic sea ice. Science, 336(6087): 1408. doi: 10.1126/science.1215065
    [8]
    Arrigo K R, Perovich D K, Pickart R S, et al. 2014. Phytoplankton blooms beneath the sea ice in the Chukchi Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 105: 1–16. doi: 10.1016/j.dsr2.2014.03.018
    [9]
    Arrigo K R, van Dijken G L. 2004. Annual changes in sea-ice, chlorophyll a, and primary production in the Ross Sea, Antarctica. Deep Sea Research Part II: Topical Studies in Oceanography, 51(1–3): 117–138
    [10]
    Arrigo K R, van Dijken G L. 2011. Secular trends in Arctic Ocean net primary production. Journal of Geophysical Research, 116(C9): C09011
    [11]
    Barber D G, Massom R A. 2007. The role of sea ice in Arctic and Antarctic polynyas. In: Smith W O, Barber D G, eds. Polynyas: Windows to the World. Elsevier Oceanography Series, 74: 1–54
    [12]
    Bhavya P S, Lee J H, Lee H W, et al. 2018. First in situ estimations of small phytoplankton carbon and nitrogen uptake rates in the Kara, Laptev, and East Siberian seas. Biogeosciences, 15(18): 5503–5517. doi: 10.5194/bg-15-5503-2018
    [13]
    Booth B C, Horner R A. 1997. Microalgae on the Arctic Ocean section, 1994: species abundance and biomass. Deep Sea Research Part II: Topical Studies in Oceanography, 44(8): 1607–1622. doi: 10.1016/S0967-0645(97)00057-X
    [14]
    Buchwald C. 2013. Nitrogen cycling in oxygen deficient zones: insights from δ15N and δ18O of nitrite and nitrate [dissertation]. Boston: Massachusetts Institute of Technology
    [15]
    Burkhardt S, Riebesell U, Zondervan I. 1999. Effects of growth rate, CO2 concentration, and cell size on the stable carbon isotope fractionation in marine phytoplankton. Geochimica et Cosmochimica Acta, 63(22): 3729–3741. doi: 10.1016/S0016-7037(99)00217-3
    [16]
    Chalup M S, Laws E A. 1990. A test of the assumptions and predictions of recent microalgal growth models with the marine phytoplankter Pavlova lutheri. Limnology and Oceanography, 35(3): 583–596. doi: 10.4319/lo.1990.35.3.0583
    [17]
    Cooper L W, Benner R, McClelland J W, et al. 2005. Linkages among runoff, dissolved organic carbon, and the stable oxygen isotope composition of seawater and other water mass indicators in the Arctic Ocean. Journal of Geophysical Research-Biogeosciences, 110: G02013
    [18]
    Copin-Montegut C, Copin-Montegut G. 1983. Stoichiometry of carbon, nitrogen, and phosphorus in marine particulate matter. Deep Sea Research Part A. Oceanographic Research Papers, 30(1): 31–46. doi: 10.1016/0198-0149(83)90031-6
    [19]
    Coupel P, Matsuoka A, Ruiz-Pino D, et al. 2015. Pigment signatures of phytoplankton communities in the Beaufort Sea. Biogeosciences, 12(4): 991–1006. doi: 10.5194/bg-12-991-2015
    [20]
    Crawford D W, Wyatt S N, Wrohan I A, et al. 2015. Low particulate carbon to nitrogen ratios in marine surface waters of the Arctic. Global Biogeochemical Cycles, 29(12): 2021–2033. doi: 10.1002/2015GB005200
    [21]
    Cronin G, Lodge D M. 2003. Effects of light and nutrient availability on the growth, allocation, carbon/nitrogen balance, phenolic chemistry, and resistance to herbivory of two freshwater macrophytes. Oecologia, 137(1): 32–41. doi: 10.1007/s00442-003-1315-3
    [22]
    Déry S J, Hernández-Henríquez M A, Burford J E, et al. 2009. Observational evidence of an intensifying hydrological cycle in northern Canada. Geophysical Research Letters, 36(13): L13402. doi: 10.1029/2009GL038852
    [23]
    Descolas-Gros C, Fontugne M R. 1985. Carbon fixation in marine phytoplankton: carboxylase activities and stable carbon-isotope ratios; physiological and paleoclimatological aspects. Marine Biology, 87(1): 1–6. doi: 10.1007/BF00396999
    [24]
    Devol A H, Codispoti L A, Christensen J P. 1997. Summer and winter denitrification rates in western Arctic shelf sediments. Continental Shelf Research, 17(9): 1029–1033. doi: 10.1016/S0278-4343(97)00003-4
    [25]
    Ehleringer J R, Cerling T E, Helliker B R. 1997. C4 photosynthesis, atmospheric CO2, and climate. Oecologia, 112(3): 285–299. doi: 10.1007/s004420050311
    [26]
    Frank M. 1996. Spurenstoffuntersuchungen zur Zirkulation im Eurasischen Becken des Nordpolarmeeres [dissertation]. Heidelberg: Ruprecht Karls Universität
    [27]
    Goericke R, Fry B. 1994. Variations of marine plankton δ13C with latitude, temperature, and dissolved CO2 in the world ocean. Global Biogeochemical Cycles, 8(1): 85–90. doi: 10.1029/93GB03272
    [28]
    Gordeev V V, Martin J M, Sidorov I S, et al. 1996. A reassessment of the Eurasian river input of water, sediment, major elements, and nutrients to the Arctic Ocean. American Journal of Science, 296(6): 664–691. doi: 10.2475/ajs.296.6.664
    [29]
    Gosselin M, Levasseur M, Wheeler P A, et al. 1997. New measurements of phytoplankton and ice algal production in the Arctic Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 44(8): 1623–1625. doi: 10.1016/S0967-0645(97)00054-4
    [30]
    Granger J, Sigman D M, Lehmann M F, et al. 2008. Nitrogen and oxygen isotope fractionation during dissimilatory nitrate reduction by denitrifying bacteria. Limnology and Oceanography, 53(6): 2533–2545. doi: 10.4319/lo.2008.53.6.2533
    [31]
    Guo Laodong, Cai Yihua, Belzile C, et al. 2012. Sources and export fluxes of inorganic and organic carbon and nutrient species from the seasonally ice-covered Yukon River. Biogeochemistry, 107(1–3): 187–206
    [32]
    Guo Laodong, Macdonald R W. 2006. Source and transport of terrigenous organic matter in the upper Yukon River: Evidence from isotope (δ13C, δ14C, and δ15N) composition of dissolved, colloidal, and particulate phases. Global Biogeochemical Cycles, 20(2): GB2011
    [33]
    He Jianfeng, Zhang Fang, Lin Ling, et al. 2012. Bacterioplankton and picophytoplankton abundance, biomass, and distribution in the Western Canada Basin during summer 2008. Deep Sea Research Part II: Topical Studies in Oceanography, 81−84: 36–45
    [34]
    Hoppema M, Anderson L G. 2007. Biogeochemistry of polynyas and their role in sequestration of anthropogenic constituents. In: Smith W O, Barber D G, eds. Polynyas: Windows to the World. Elsevier Oceanography Series, 74: 193–221
    [35]
    Hsiao S I C. 1992. Dynamics of ice algae and phytoplankton in Frobisher Bay. Polar Biology, 12(6): 645–651
    [36]
    Klein B, LeBlanc B, Mei Zhiping, et al. 2002. Phytoplankton biomass, production and potential export in the North Water. Deep Sea Research Part II: Topical Studies in Oceanography, 49(22–23): 4983–5002
    [37]
    Kling G W, Fry B, O’Brien W J. 1992. Stable isotopes and planktonic trophic structure in arctic lakes. Ecology, 73(2): 561–566. doi: 10.2307/1940762
    [38]
    Körtzinger A, Koeve W, Kähler W, et al. 2001. C:N ratios in the mixed layer during the productive season in the northeast Atlantic Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 48(3): 661–688. doi: 10.1016/S0967-0637(00)00051-0
    [39]
    Kuliński K, Kędra M, Legeżyńska J, et al. 2014. Particulate organic matter sinks and sources in high Arctic fjord. Journal of Marine Systems, 139: 27–37. doi: 10.1016/j.jmarsys.2014.04.018
    [40]
    Kumar V, Tiwari M, Nagoji S, et al. 2016. Evidence of anomalously low δ13C of marine organic matter in an Arctic fjord. Scientific Reports, 6(1): 36192. doi: 10.1038/srep36192
    [41]
    Landrum J P, Altabet M A, Montoya J P. 2011. Basin-scale distributions of stable nitrogen isotopes in the subtropical North Atlantic Ocean: Contribution of diazotroph nitrogen to particulate organic matter and mesozooplankton. Deep Sea Research Part I: Oceanographic Research Papers, 58(5): 615–625. doi: 10.1016/j.dsr.2011.01.012
    [42]
    Lehmann M F, Bernasconi S M, Barbieri A, et al. 2002. Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochimica et Cosmochimica Acta, 66(20): 3573–3584. doi: 10.1016/S0016-7037(02)00968-7
    [43]
    Lewis E L, Ponton D, Legendre L, et al. 1996. Springtime sensible heat, nutrients and phytoplankton in the Northwater Polynya, Canadian Arctic. Continental Shelf Research, 16(14): 1775–1781. doi: 10.1016/0278-4343(96)00015-5
    [44]
    Li Qi, Chen Min, Jia Renming, et al. 2017. Transit time of river water in the Bering and Chukchi Seas estimated from δ18O and radium isotopes. Progress in Oceanography, 159: 115–129. doi: 10.1016/j.pocean.2017.08.004
    [45]
    Li W K W, McLaughlin F A, Lovejoy C, et al. 2009. Smallest algae thrive as the Arctic Ocean freshens. Science, 326(5952): 539. doi: 10.1126/science.1179798
    [46]
    Lobbes J M, Fitznar H P, Kattner G. 2000. Biogeochemical characteristics of dissolved and particulate organic matter in Russian rivers entering the Arctic Ocean. Geochimica et Cosmochimica Acta, 64(17): 2973–2983. doi: 10.1016/S0016-7037(00)00409-9
    [47]
    Macdonald R W, Carmack E C, McLaughlin F A, et al. 1999. Connections among ice, runoff and atmospheric forcing in the Beaufort Gyre. Geophysical Research Letters, 26(15): 2223–2226. doi: 10.1029/1999GL900508
    [48]
    Macdonald R W, McLaughlin F A, Carmack E C. 2002. Fresh water and its sources during the SHEBA drift in the Canada Basin of the Arctic Ocean. Deep Sea Research Part I, 49(10): 1769–1785. doi: 10.1016/S0967-0637(02)00097-3
    [49]
    Magen C, Chaillou G, Crowe S A, et al. 2010. Origin and fate of particulate organic matter in the southern Beaufort Sea−Amundsen Gulf region, Canadian Arctic. Estuarine, Coastal and Shelf Science, 86: 31–41. doi: 10.1016/j.ecss.2009.09.009
    [50]
    Martin S, Drucker R. 1997. The effect of possible Taylor columns on the summer ice retreat in the Chukchi Sea. Journal of Geophysical Research: Oceans, 102(C5): 10473–10482. doi: 10.1029/97JC00145
    [51]
    Martiny A C, Pham C T A, Primeau F W, et al. 2013a. Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter. Nature Geoscience, 6(4): 279–283. doi: 10.1038/ngeo1757
    [52]
    Martiny A C, Vrugt J A, Primeau F W, et al. 2013b. Regional variation in the particulate organic carbon to nitrogen ratio in the surface ocean. Global Biogeochemical Cycles, 27(3): 723–731. doi: 10.1002/gbc.20061
    [53]
    McClelland J W, Déry S J, Peterson B J, et al. 2006. A pan-arctic evaluation of changes in river discharge during the latter half of the 20th century. Geophysical Research Letters, 33(6): L06715
    [54]
    McClelland J W, Holmes R M, Peterson B J, et al. 2008. Development of a pan-Arctic database for river chemistry. EOS, Transactions American Geophysical Union, 89(24): 217–218
    [55]
    McClelland J W, Holmes R M, Peterson B J, et al. 2016. Particulate organic carbon and nitrogen export from major Arctic rivers. Global Biogeochemical Cycles, 30(5): 629–643. doi: 10.1002/2015GB005351
    [56]
    McLaughlin F A, Carmack E C. 2010. Deepening of the nutricline and chlorophyll maximum in the Canada Basin interior, 2003−2009. Geophysical Research Letters, 37(24): L24602
    [57]
    Montoya J P, McCarthy J J. 1995. Isotopic fractionation during nitrate uptake by phytoplankton grown in continuous culture. Journal of Plankton Research, 17(3): 439–464. doi: 10.1093/plankt/17.3.439
    [58]
    Moore G W K, Pickart R S. 2012. The Wrangel Island Polynya in early summer: Trends and relationships to other polynyas and the Beaufort Sea High. Geophysical Research Letters, 39(5): L05503
    [59]
    Naidu A S, Cooper L W, Finney B P, et al. 2000. Organic carbon isotope ratios (δ13C) of Arctic Amerasian continental shelf sediments. International Journal of Earth Sciences, 89(3): 522–532. doi: 10.1007/s005310000121
    [60]
    Needoba J A, Waser N A, Harrison P J, et al. 2003. Nitrogen isotope fractionation in 12 species of marine phytoplankton during growth on nitrate. Marine Ecology Progress Series, 255: 81–91. doi: 10.3354/meps255081
    [61]
    Nitishinsky M, Anderson L G, Hölemann J A. 2007. Inorganic carbon and nutrient fluxes on the Arctic Shelf. Continental Shelf Research, 27(10–11): 1584–1599
    [62]
    Östlund H G, Hut G. 1984. Arctic Ocean water mass balance from isotope data. Journal of Geophysical Research, 89: 6373–6381. doi: 10.1029/JC089iC04p06373
    [63]
    Oxtoby L E, Mathis J T, Juranek L W, et al. 2016. Estimating stable carbon isotope values of microphytobenthos in the Arctic for application to food web studies. Polar Biology, 39(3): 473–483. doi: 10.1007/s00300-015-1800-2
    [64]
    Pesant S, Legendre L, Gosselin M, et al. 1996. Size-differential regimes of phytoplankton production in the Northeast Water Polynya (77°–81°N). Marine Ecology Progress Series, 142: 75–86. doi: 10.3354/meps142075
    [65]
    Pickart R S, Pratt L J, Torres D J, et al. 2010. Evolution and dynamics of the flow through Herald Canyon in the western Chukchi Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 57(1–2): 5–26
    [66]
    Pineault S, Tremblay J É, Gosselin M, et al. 2013. The isotopic signature of particulate organic C and N in bottom ice: Key influencing factors and applications for tracing the fate of ice-algae in the Arctic Ocean. Journal of Geophysical Research: Oceans, 118(1): 287–300. doi: 10.1029/2012JC008331
    [67]
    Qi Di, Chen Liqi, Chen Baoshan, et al. 2017. Increase in acidifying water in the western Arctic Ocean. Nature Climate Change, 7(3): 195–199. doi: 10.1038/nclimate3228
    [68]
    Rawlins M A, Steele M, Holland M M, et al. 2010. Analysis of the Arctic system for freshwater cycle intensification: Observations and expectations. Journal of Climate, 23(21): 5715–5737. doi: 10.1175/2010JCLI3421.1
    [69]
    Redfield A C. 1958. The biological control of chemical factors in the environment. American Scientist, 46: 205–221
    [70]
    Semiletov I, Dudarev O, Luchin V, et al. 2005. The East Siberian Sea as a transition zone between Pacific-derived waters and Arctic shelf waters. Geophysical Research Letters, 32(10): L10614. doi: 10.1029/2005GL022490
    [71]
    Semiletov I, Pipko I, Gustafsson Ö, et al. 2016. Acidification of East Siberian Arctic Shelf waters through addition of freshwater and terrestrial carbon. Nature Geoscience, 9(5): 361–365. doi: 10.1038/ngeo2695
    [72]
    Skrzypek G, Ford D. 2014. Stable isotope analysis of saline water samples on a cavity ring-down spectroscopy instrument. Environmental Science and Technology, 48(5): 2827–2834. doi: 10.1021/es4049412
    [73]
    Stringer W J, Groves J E. 1991. Location and areal extent of polynyas in the Bering and Chukchi Seas. Arctic, 44(S1): 164–171
    [74]
    Tagliabue A, Bopp L. 2008. Towards understanding global variability in ocean carbon-13. Global Biogeochemical Cycles, 22(1): GB1025
    [75]
    Taguchi S. 1976. Relationship between photosynthesis and cell size of marine diatoms. Journal of Phycology, 12(2): 185–189
    [76]
    Takahashi T, Broecker W S, Langer S. 1985. Redfield ratio based on chemical data from isopycnal surfaces. Journal of Geophysical Research: Oceans, 90(C4): 6907–6924. doi: 10.1029/JC090iC04p06907
    [77]
    Talley L D, Pickard G L, Emery W J, et al. 2011. Descriptive Physical Oceanography: An Introduction. 6th ed. Boston: Elsevier, 1–560
    [78]
    Tank S E, Raymond P A, Striegl R G, et al. 2012. A land-to-ocean perspective on the magnitude, source and implication of DIC flux from major Arctic rivers to the Arctic Ocean. Global Biochemical Cycles, 26(4): GB4018
    [79]
    Tremblay J E, Gratton Y, Fauchot J, et al. 2002. Climatic and oceanic forcing of new, net, and diatom production in the North Water. Deep Sea Research Part II: Topical Studies in Oceanography, 49(22−23): 4927–4946
    [80]
    Tremblay J É, Michel C, Hobson K A, et al. 2006. Bloom dynamics in early opening waters of the Arctic Ocean. Limnology and Oceanography, 51(2): 900–912. doi: 10.4319/lo.2006.51.2.0900
    [81]
    Vonk J E, Sánchez-García L, Semiletov I, et al. 2010. Molecular and radiocarbon constraints on sources and degradation of terrestrial organic carbon along the Kolyma paleoriver transect, East Siberian Sea. Biogeosciences, 7(10): 3153–3166. doi: 10.5194/bg-7-3153-2010
    [82]
    Vrede K, Heldal M, Norland S, et al. 2002. Elemental composition (C, N, P) and cell volume of exponentially growing and nutrient-limited bacterioplankton. Applied and Environmental Microbiology, 68(6): 2965–2971. doi: 10.1128/AEM.68.6.2965-2971.2002
    [83]
    Weingartner T, Aagaard K, Woodgate R, et al. 2005. Circulation on the north central Chukchi Sea shelf. Deep Sea Research Part II: Topical Studies in Oceanography, 52(24−26): 3150–3174
    [84]
    Woodgate R A, Aagaard K, Weingartner T J. 2005. A year in the physical oceanography of the Chukchi Sea: Moored measurements from autumn 1990–1991. Deep Sea Research Part II: Topical Studies in Oceanography, 52(24−26): 3116–3149
    [85]
    Yun M S, Chung K H, Zimmermann S, et al. 2012. Phytoplankton productivity and its response to higher light levels in the Canada Basin. Polar Biology, 35(2): 257–268. doi: 10.1007/s00300-011-1070-6
    [86]
    Yun M S, Kim B K, Joo H T, et al. 2015. Regional productivity of phytoplankton in the western Arctic Ocean during summer in 2010. Deep Sea Research Part II: Topical Studies in Oceanography, 120: 61–71. doi: 10.1016/j.dsr2.2014.11.023
    [87]
    Zhang Run, Chen Min, Guo Laodong, et al. 2012. Variations in the isotopic composition of particulate organic carbon and their relation with carbon dynamics in the western Arctic Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 81(81–84): 72–78
    [88]
    Zhuang Yanpei, Jin Haiyan, Li Hongliang, et al. 2016. Pacific inflow control on phytoplankton community in the Eastern Chukchi Shelf during summer. Continental Shelf Research, 129: 23–32. doi: 10.1016/j.csr.2016.09.010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (151) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return