Volume 39 Issue 9
Sep.  2020
Turn off MathJax
Article Contents
Longbin Sha, Dongling Li, Yanguang Liu, Bin Wu, Yanni Wu, Karen Luise Knudsen, Zhongqiao Li, Hao Xu. Biogenic silica concentration as a marine primary productivity proxy in the Holsteinsborg Dyb, West Greenland, during the last millennium[J]. Acta Oceanologica Sinica, 2020, 39(9): 78-85. doi: 10.1007/s13131-020-1648-3
Citation: Longbin Sha, Dongling Li, Yanguang Liu, Bin Wu, Yanni Wu, Karen Luise Knudsen, Zhongqiao Li, Hao Xu. Biogenic silica concentration as a marine primary productivity proxy in the Holsteinsborg Dyb, West Greenland, during the last millennium[J]. Acta Oceanologica Sinica, 2020, 39(9): 78-85. doi: 10.1007/s13131-020-1648-3

Biogenic silica concentration as a marine primary productivity proxy in the Holsteinsborg Dyb, West Greenland, during the last millennium

doi: 10.1007/s13131-020-1648-3
Funds:  The Open Research Fund of State Key Laboratory of Estuarine and Coastal Research under contract No. SKLEC-KF201708; the Project of Laboratory for Marine Geology, Pilot National Laboratory for Marine Science and Technology (Qingdao) under contract No. MGQNLM201707; the National Natural Science Foundation of China under contract Nos 41776193, 41876215, 41876070 and 41406209; the Natural Science Foundation of Zhejiang Province under contract Nos LY17D060001 and LQ15D020001; the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology (Qingdao) under contract No. 2018SDKJ0104-3.
More Information
  • We analyzed the biogenic silica (BSi) content and produced a diatom-based summer sea-surface temperature (SST) reconstruction for sediment core GC4 from the Holsteinsborg Dyb, West Greenland. Our aim was to reconstruct marine productivity and climatic fluctuations during the last millennium. Increased BSi content and diatom abundance suggest relatively high marine productively during the interval of AD 1000–1400, corresponding in time to the Medieval Warm Period (MWP). The summer SST reconstruction indicates relatively warm conditions during AD 900–1100, followed by cooling after AD 1100. An extended cooling period during AD 1400–1900 is characterized by prolonged low in reconstructed SST and high sea-ice concentration. The BSi values fluctuated during this period, suggesting varying marine productivity during the Little Ice Age (LIA). There is no significant correlation between the BSi content and SST during the last millennium, suggesting that the summer SST has little influence on marine productively in the Holsteinsborg Dyb. A good correspondence between the BSi content and the element Ti counts in core GC4 suggests that silicate-rich meltwater from the Greenland ice sheet was likely responsible for changes in marine productively in the Holsteinsborg Dyb.
  • loading
  • [1]
    Andersen O G N. 1981. The annual cycle of temperature, salinity, currents and water masses in Disko Bugt and adjacent waters, West Greenland. Medd Grønland Bioscience, 5: 1–36
    [2]
    Arrigo K R, van Dijken G L. 2015. Continued increases in Arctic Ocean primary production. Progress in Oceanography, 136: 60–70. doi: 10.1016/j.pocean.2015.05.002
    [3]
    Bradbury J P, Winter T C. 1976. Areal distribution and stratigraphy of diatoms in the sediments of Lake Sallie, Minnesota. Ecology, 57(5): 1005–1014. doi: 10.2307/1941065
    [4]
    Buch E. 2002. Present oceanographic conditions in Greenland Waters. Copenhagen: Danish Meteorological Institute, 1–36
    [5]
    Colman S M, Bratton J F. 2003. Anthropogenically induced changes in sediment and biogenic silica fluxes in Chesapeake Bay. Geology, 31(1): 71–74. doi: 10.1130/0091-7613(2003)031<0071:AICISA>2.0.CO;2
    [6]
    Comiso J C. 2012. Large decadal decline of the arctic multiyear ice cover. Journal of Climate, 25(4): 1176–1193. doi: 10.1175/JCLI-D-11-00113.1
    [7]
    DeMaster D J. 1981. The supply and accumulation of silica in the marine environment. Geochimica et Cosmochimica Acta, 45(10): 1715–1732. doi: 10.1016/0016-7037(81)90006-5
    [8]
    DeMaster D J. 2002. The accumulation and cycling of biogenic silica in the Southern Ocean: revisiting the marine silica budget. Deep Sea Research Part II: Topical Studies in Oceanography, 49(16): 3155–3167. doi: 10.1016/S0967-0645(02)00076-0
    [9]
    Engstrom D R, Swain E B, Kingston J C. 1985. A palaeolimnological record of human disturbance from Harvey’s Lake, Vermont: geochemistry, pigments and diatoms. Freshwater Biology, 15(3): 261–288. doi: 10.1111/j.1365-2427.1985.tb00200.x
    [10]
    Erbs-Hansen D R, Knudsen K L, Olsen J, et al. 2013. Paleoceanographical development off Sisimiut, West Greenland, during the mid- and late Holocene: a multiproxy study. Marine Micropaleontology, 102: 79–97. doi: 10.1016/j.marmicro.2013.06.003
    [11]
    Flower R J. 1980. A study of sediment formation, transport and deposition in Lough Neagh, Northern Ireland, with special reference to diatoms [dissertation]. Northern Ireland: The New University of Ulster
    [12]
    Gersonde R, Zielinski U. 2000. The reconstruction of late Quaternary Antarctic sea-ice distribution—the use of diatoms as a proxy for sea-ice. Palaeogeography, Palaeoclimatology, Palaeoecology, 162(3–4): 263–286
    [13]
    Hu Fengsheng, Kaufman D, Yoneji S, et al. 2003. Cyclic variation and solar forcing of Holocene climate in the Alaskan subarctic. Science, 301(5641): 1890–1893. doi: 10.1126/science.1088568
    [14]
    Jansen J H F, Van der Gaast S J, Koster B, et al. 1998. CORTEX, a shipboard XRF-scanner for element analyses in split sediment cores. Marine Geology, 151(1–4): 143–153
    [15]
    Jensen K G, Kuijpers A, Koç N, et al. 2004. Diatom evidence of hydrographic changes and ice conditions in Igaliku Fjord, South Greenland, during the past 1500 years. The Holocene, 14(2): 152–164. doi: 10.1191/0959683604hl698rp
    [16]
    Jensen S M, Hansen H, Secher K, et al. 2002. Kimberlites and other ultramafic alkaline rocks in the Sisimiut–Kangerlussuaq region, southern West Greenland. Geology of Greenland Survey Bulletin, 191: 57–66
    [17]
    Jiang Hui, Eiríksson J, Schulz M, et al. 2005. Evidence for solar forcing of sea-surface temperature on the North Icelandic Shelf during the late Holocene. Geology, 33(1): 73–76. doi: 10.1130/G21130.1
    [18]
    Jiang Hui, Muscheler R, Björck S, et al. 2015. Solar forcing of Holocene summer sea-surface temperatures in the northern North Atlantic. Geology, 43(3): 203–206. doi: 10.1130/G36377.1
    [19]
    Jiang Hui, Seidenkrantz M S, Knudsen K L, et al. 2001. Diatom surface sediment assemblages around Iceland and their relationships to oceanic environmental variables. Marine Micropaleontology, 41(1–2): 73–96
    [20]
    Justwan A, Koç N, Jennings A E. 2008. Evolution of the Irminger and East Icelandic Current systems through the Holocene, revealed by diatom-based sea surface temperature reconstructions. Quaternary Science Reviews, 27(15–16): 1571–1582
    [21]
    Knudsen K L, Stabell B, Seidenkrantz M S, et al. 2008. Deglacial and Holocene conditions in northernmost Baffin Bay: sediments, foraminifera, diatoms and stable isotopes. Boreas, 37(3): 346–376. doi: 10.1111/j.1502-3885.2008.00035.x
    [22]
    Koc Karpuz N, Schrader H. 1990. Surface sediment diatom distribution and Holocene Paleotemperature variations in the Greenland, Iceland and Norwegian Sea. Paleoceanography and Paleoclimatology, 5(4): 557–580
    [23]
    Koning E, Brummer G J, Van Raaphorst W, et al. 1997. Settling, dissolution and burial of biogenic silica in the sediments off Somalia (northwestern Indian Ocean). Deep Sea Research Part II: Topical Studies in Oceanography, 44(6–7): 1341–1360
    [24]
    Krause-Jensen D, Marbà N, Olesen B, et al. 2012. Seasonal sea ice cover as principal driver of spatial and temporal variation in depth extension and annual production of kelp in Greenland. Global Change Biology, 18(10): 2981–2994. doi: 10.1111/j.1365-2486.2012.02765.x
    [25]
    Krawczyk D W, Witkowski A, Moros M, et al. 2017. Quantitative reconstruction of Holocene sea ice and sea surface temperature off West Greenland from the first regional diatom data set. Paleoceanography and Paleoclimatology, 32(1): 18–40
    [26]
    Lamb H H. 1965. The early medieval warm epoch and its sequel. Palaeogeography, Palaeoclimatology, Palaeoecology, 1: 13–37. doi: 10.1016/0031-0182(65)90004-0
    [27]
    Li Dongling, Sha Longbin, Li Jialin, et al. 2017. Summer Sea-Surface Temperatures and Climatic Events in Vaigat Strait, West Greenland, during the Last 5000 Years. Sustainability, 9(5): 704. doi: 10.3390/su9050704
    [28]
    Liu Sumei, Ye Xiwen, Zhang Jing, et al. 2002. Problems with biogenic silica measurement in marginal seas. Marine Geology, 192(4): 383-392
    [29]
    Liu Sumei, Ye Xiwen, Zhang Jing, et al. 2008. The silicon balance in Jiaozhou Bay, North China. Journal of Marine Systems, 74(1–2): 639–648
    [30]
    Liu Sumei, Zhang Jing, Chen Hongtao, et al. 2005. Factors influencing nutrient dynamics in the eutrophic Jiaozhou Bay, North China. Progress in Oceanography, 66(1): 66–85. doi: 10.1016/j.pocean.2005.03.009
    [31]
    Lykke-Andersen H, Knudsen K L. 2007. Geologien i Holsteinsborg Dyb. Geoviden: Geologi og Geografi, 3: 6–7
    [32]
    Maslanik J, Stroeve J, Fowler C, et al. 2011. Distribution and trends in Arctic sea ice age through spring 2011. Geophysical Research Letters, 38(13): L13502
    [33]
    Meire L, Meire P, Struyf E, et al. 2016. High export of dissolved silica from the Greenland Ice Sheet. Geophysical Research Letters, 43(17): 9173–9182. doi: 10.1002/2016GL070191
    [34]
    Miettinen A, Divine D V, Husum K, et al. 2015. Exceptional ocean surface conditions on the SE Greenland shelf during the Medieval Climate Anomaly. Paleoceanography and Paleoclimatology, 30(12): 1657–1674
    [35]
    Moffa-Sánchez P, Hall I R, Barker S, et al. 2014. Surface changes in the eastern Labrador Sea around the onset of the Little Ice Age. Paleoceanography and Paleoclimatology, 29(3): 160–175
    [36]
    Møller H S, Jensen K G, Kuijpers A, et al. 2006. Late-Holocene environment and climatic changes in Ameralik Fjord, southwest Greenland: evidence from the sedimentary record. The Holocene, 16(5): 685–695. doi: 10.1191/0959683606hl963rp
    [37]
    Mortlock R A, Froelich P N. 1989. A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep Sea Research Part A. Oceanographic Research Papers, 36(9): 1415–1426. doi: 10.1016/0198-0149(89)90092-7
    [38]
    Nelson D M, Tréguer P, Brzezinski M A, et al. 1995. Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochemical Cycles, 9(3): 359–372. doi: 10.1029/95GB01070
    [39]
    Newberry T L, Schelske C L. 1986. Biogenic silica record in the sediments of Little Round Lake, Ontario. Hydrobiologia, 143(1): 293–300. doi: 10.1007/BF00026673
    [40]
    Olsen J, Anderson N J, Knudsen M F. 2012. Variability of the North Atlantic Oscillation over the past 5, 200 years. Nature Geoscience, 5(11): 808–812. doi: 10.1038/ngeo1589
    [41]
    Perovich D K, Richter-Menge J A. 2009. Loss of Sea Ice in the Arctic. Annual Review of Marine Science, 1: 417–441. doi: 10.1146/annurev.marine.010908.163805
    [42]
    Peterson L C, Haug G H, Hughen K A, et al. 2000. Rapid changes in the hydrologic cycle of the tropical atlantic during the last glacial. Science, 290(5498): 1947–1951. doi: 10.1126/science.290.5498.1947
    [43]
    Ragueneau O, Tréguer P, Leynaert A, et al. 2000. A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Global and Planetary Change, 26(4): 317–365. doi: 10.1016/S0921-8181(00)00052-7
    [44]
    Ramsey C B. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon, 51(1): 337–360. doi: 10.1017/S0033822200033865
    [45]
    Ran Lihua, Chen Jianfang, Wiesner M G, et al. 2015. Variability in the abundance and species composition of diatoms in sinking particles in the northern South China Sea: results from time-series moored sediment traps. Deep Sea Research Part II: Topical Studies in Oceanography, 122: 15–24. doi: 10.1016/j.dsr2.2015.07.004
    [46]
    Reimer P J, Baillie M G L, Bard E, et al. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50, 000 years cal BP. Radiocarbon, 51(4): 1111–1150. doi: 10.1017/S0033822200034202
    [47]
    Ribeiro S, Moros M, Ellegaard M, et al. 2012. Climate variability in West Greenland during the past 1500 years: evidence from a high-resolution marine palynological record from Disko Bay. Boreas, 41(1): 68–83. doi: 10.1111/j.1502-3885.2011.00216.x
    [48]
    Ribeiro S, Sejr M K, Limoges A, et al. 2017. Sea ice and primary production proxies in surface sediments from a High Arctic Greenland fjord: spatial distribution and implications for palaeoenvironmental studies. Ambio, 46(S1): 106–118. doi: 10.1007/s13280-016-0894-2
    [49]
    Ribergaard M H. 2011. Oceanographic investigations off West Greenland 2010. Danish: Danish Metrological Institute Centre for Ocean and Ice (DMI), 1–44
    [50]
    Rickert D. 2000. Dissolution kinetics of biogenic silica in marine environments Lösungskinetik von biogenem Opal in marinen Systemen. Berichte zur Polarforschung (Reports on Polar Research), 351: 1–182
    [51]
    Romero O, Hebbeln D. 2003. Biogenic silica and diatom thanatocoenosis in surface sediments below the Peru-Chile Current: controlling mechanisms and relationship with productivity of surface waters. Marine Micropaleontology, 48(1–2): 71–90
    [52]
    Roncaglia L, Kuijpers A. 2004. Palynofacies analysis and organic-walled dinoflagellate cysts in late-Holocene sediments from Igaliku Fjord, South Greenland. The Holocene, 14(2): 172–184. doi: 10.1191/0959683604hl700rp
    [53]
    Schelske C L, Stoermer E F, Conley D J, et al. 1983. Early eutrophication in the Lower Great Lakes: new evidence from biogenic silica in sediments. Science, 222(4621): 320–322. doi: 10.1126/science.222.4621.320
    [54]
    Schlüter M, Sauter E. 2000. Biogenic silica cycle in surface sediments of the Greenland Sea. Journal of Marine Systems, 23(4): 333–342. doi: 10.1016/S0924-7963(99)00070-6
    [55]
    Seidenkrantz M S, Roncaglia L, Fischel A, et al. 2008. Variable North Atlantic climate seesaw patterns documented by a late Holocene marine record from Disko Bugt, West Greenland. Marine Micropaleontology, 68(1–2): 66–83
    [56]
    Sejr M K, Blicher M E, Rysgaard S. 2009. Sea ice cover affects inter-annual and geographic variation in growth of the Arctic cockle Clinocardium ciliatum (Bivalvia) in Greenland. Marine Ecology Progress Series, 389: 149–158. doi: 10.3354/meps08200
    [57]
    Sha Longbin, Jiang Hui, Knudsen K L. 2012. Diatom evidence of climatic change in Holsteinsborg Dyb, west of Greenland, during the last 1200 years. The Holocene, 22(3): 347–358. doi: 10.1177/0959683611423684
    [58]
    Sha Longbin, Jiang Hui, Seidenkrantz M S, et al. 2016. Solar forcing as an important trigger for West Greenland sea-ice variability over the last millennium. Quaternary Science Reviews, 131: 148–156. doi: 10.1016/j.quascirev.2015.11.002
    [59]
    Solignac S, Seidenkrantz M S, Jessen C, et al. 2011. Late-Holocene sea-surface conditions offshore Newfoundland based on dinoflagellate cysts. The Holocene, 21(4): 539–552. doi: 10.1177/0959683610385720
    [60]
    St-Onge G, Mulder T, Francus P, et al. 2007. Chapter two continuous physical properties of cored marine sediments. Developments in Marine Geology, 1: 63–98. doi: 10.1016/S1572-5480(07)01007-X
    [61]
    Swann G E A, Mackay A W. 2006. Potential limitations of biogenic silica as an indicator of abrupt climate change in Lake Baikal, Russia. Journal of Paleolimnology, 36(1): 81–89. doi: 10.1007/s10933-006-0005-7
    [62]
    Tang C C L, Ross C K, Yao T, et al. 2004. The circulation, water masses and sea-ice of Baffin Bay. Progress in Oceanography, 63(4): 183–228. doi: 10.1016/j.pocean.2004.09.005
    [63]
    Trouet V, Esper J, Graham N E, et al. 2009. Persistent positive North Atlantic oscillation mode dominated the Medieval Climate Anomaly. Science, 324(5923): 78–80. doi: 10.1126/science.1166349
    [64]
    Van Cappellen P, Dixit S, van Beusekom J. 2002. Biogenic silica dissolution in the oceans: reconciling experimental and field-based dissolution rates. Global Biogeochemical Cycles, 16(4): 1075
    [65]
    van der Weijden A J, van der Weijden C H. 2002. Silica fluxes and opal dissolution rates in the northern Arabian Sea. Deep Sea Research Part I: Oceanographic Research Papers, 49(1): 157–173. doi: 10.1016/S0967-0637(01)00050-4
    [66]
    Vinther B M, Buchardt S L, Clausen H B, et al. 2009. Holocene thinning of the Greenland ice sheet. Nature, 461(7262): 385–388. doi: 10.1038/nature08355
    [67]
    Wassmann P, Duarte C M, Agustí S, et al. 2011. Footprints of climate change in the Arctic marine ecosystem. Global Change Biology, 17(2): 1235–1249. doi: 10.1111/j.1365-2486.2010.02311.x
    [68]
    Wu Bin, Lu Chao, Liu Sumei. 2015. Dynamics of biogenic silica dissolution in Jiaozhou Bay, western Yellow Sea. Marine Chemistry, 174: 58–66. doi: 10.1016/j.marchem.2015.05.004
    [69]
    Yarincik K M, Murray R W, Peterson L C. 2000. Climatically sensitive eolian and hemipelagic deposition in the Cariaco Basin, Venezuela, over the past 578, 000 years: results from Al/Ti and K/Al. Paleoceanography and Paleoclimatology, 15(2): 210–228
    [70]
    Ye Xiwen, Liu Sumei, Zhao Yingfei, et al. 2004. The distribution of biogenic silica in the sediments of the East China Sea and the Yellow Sea and its environmental signification. China Environmental Science (in Chinese), 24(3): 265–269
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (209) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return